基于纸的编程考试的语义反馈

I-Han Hsiao, Sesha Kumar Pandhalkudi Govindarajan
{"title":"基于纸的编程考试的语义反馈","authors":"I-Han Hsiao, Sesha Kumar Pandhalkudi Govindarajan","doi":"10.1109/ICALT.2016.111","DOIUrl":null,"url":null,"abstract":"We design and study ExamParser, an innovative intelligent semantic automatic indexing method, for orchestrating today's programming classes. ExamParser automatically processes paper-based exams by associating sets of concepts to the exam questions, which provide graders semantic grading guidelines and leave personalized semantic feedback. Results showed that the ExamPraser significantly extract more and diverse concepts from exams. It also achieves high coherence within exam, indicating the automatic concept extraction from exams is promising and could be a potential technological solution to provide personalized feedback for large-size programming classes.","PeriodicalId":188900,"journal":{"name":"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Feedback for Paper-Based Programming Exams\",\"authors\":\"I-Han Hsiao, Sesha Kumar Pandhalkudi Govindarajan\",\"doi\":\"10.1109/ICALT.2016.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design and study ExamParser, an innovative intelligent semantic automatic indexing method, for orchestrating today's programming classes. ExamParser automatically processes paper-based exams by associating sets of concepts to the exam questions, which provide graders semantic grading guidelines and leave personalized semantic feedback. Results showed that the ExamPraser significantly extract more and diverse concepts from exams. It also achieves high coherence within exam, indicating the automatic concept extraction from exams is promising and could be a potential technological solution to provide personalized feedback for large-size programming classes.\",\"PeriodicalId\":188900,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2016.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2016.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们设计并研究了ExamParser,这是一种创新的智能语义自动索引方法,用于编排当今的编程课程。ExamParser通过将概念集与考试问题相关联来自动处理基于纸张的考试,这为评分者提供了语义评分指南,并留下个性化的语义反馈。结果表明,ExamPraser显著地从考试中提取了更多和更多样化的概念。它还在考试中实现了高度的一致性,表明从考试中自动提取概念是有前途的,可能是为大型编程课程提供个性化反馈的潜在技术解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Feedback for Paper-Based Programming Exams
We design and study ExamParser, an innovative intelligent semantic automatic indexing method, for orchestrating today's programming classes. ExamParser automatically processes paper-based exams by associating sets of concepts to the exam questions, which provide graders semantic grading guidelines and leave personalized semantic feedback. Results showed that the ExamPraser significantly extract more and diverse concepts from exams. It also achieves high coherence within exam, indicating the automatic concept extraction from exams is promising and could be a potential technological solution to provide personalized feedback for large-size programming classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信