有效目标定位的时空管前馈与反馈处理

Khari Jarrett, Joachim Lohn-Jaramillo, E. Bowen, Laura Ray, R. Granger
{"title":"有效目标定位的时空管前馈与反馈处理","authors":"Khari Jarrett, Joachim Lohn-Jaramillo, E. Bowen, Laura Ray, R. Granger","doi":"10.5220/0007313603770387","DOIUrl":null,"url":null,"abstract":"We introduce a new set of mechanisms for tracking entities through videos, at substantially less expense than required by standard methods. The approach combines inexpensive initial processing of individual frames together with integration of information across long time spans (multiple frames), resulting in the recognition and tracking of spatially and temporally contiguous entities, rather than focusing on the individual pixels that comprise those entities.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feedforward and Feedback Processing of Spatiotemporal Tubes for Efficient Object Localization\",\"authors\":\"Khari Jarrett, Joachim Lohn-Jaramillo, E. Bowen, Laura Ray, R. Granger\",\"doi\":\"10.5220/0007313603770387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new set of mechanisms for tracking entities through videos, at substantially less expense than required by standard methods. The approach combines inexpensive initial processing of individual frames together with integration of information across long time spans (multiple frames), resulting in the recognition and tracking of spatially and temporally contiguous entities, rather than focusing on the individual pixels that comprise those entities.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007313603770387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007313603770387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了一套新的机制,通过视频跟踪实体,比标准方法所需的费用少得多。该方法将单个帧的低成本初始处理与跨长时间跨度(多帧)的信息集成相结合,从而识别和跟踪空间和时间上连续的实体,而不是专注于组成这些实体的单个像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedforward and Feedback Processing of Spatiotemporal Tubes for Efficient Object Localization
We introduce a new set of mechanisms for tracking entities through videos, at substantially less expense than required by standard methods. The approach combines inexpensive initial processing of individual frames together with integration of information across long time spans (multiple frames), resulting in the recognition and tracking of spatially and temporally contiguous entities, rather than focusing on the individual pixels that comprise those entities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信