基于人工神经网络综合的超指令天线阵列设计方法

Abdellah Touhami, A. Sharaiha, S. Collardey
{"title":"基于人工神经网络综合的超指令天线阵列设计方法","authors":"Abdellah Touhami, A. Sharaiha, S. Collardey","doi":"10.23919/URSIGASS51995.2021.9560327","DOIUrl":null,"url":null,"abstract":"In this work, a novel technique is proposed to design superdirective antenna arrays using artificial neural network (ANN). A radial basis function neural network model (RBNN) is developed and used to determine the optimal inter-elements separating distance and its corresponding excitation coefficients for a single frequency. The developed model is deployed for designing a three stacked S-shaped monopole antenna array. The simulation result show that a maximal directivity of 10 dBi for a separation distance of 0.16 λ, was achieved.","PeriodicalId":152047,"journal":{"name":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network Synthesis Based Approach For Superdirective Antenna Arrays Design\",\"authors\":\"Abdellah Touhami, A. Sharaiha, S. Collardey\",\"doi\":\"10.23919/URSIGASS51995.2021.9560327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel technique is proposed to design superdirective antenna arrays using artificial neural network (ANN). A radial basis function neural network model (RBNN) is developed and used to determine the optimal inter-elements separating distance and its corresponding excitation coefficients for a single frequency. The developed model is deployed for designing a three stacked S-shaped monopole antenna array. The simulation result show that a maximal directivity of 10 dBi for a separation distance of 0.16 λ, was achieved.\",\"PeriodicalId\":152047,\"journal\":{\"name\":\"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSIGASS51995.2021.9560327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS51995.2021.9560327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用人工神经网络设计超指令天线阵列的新方法。建立了径向基函数神经网络模型(RBNN),用于确定单频下最优元间分离距离及其相应的激励系数。将所建立的模型应用于三叠s型单极天线阵的设计。仿真结果表明,当分离距离为0.16 λ时,系统的最大指向性可达10 dBi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Synthesis Based Approach For Superdirective Antenna Arrays Design
In this work, a novel technique is proposed to design superdirective antenna arrays using artificial neural network (ANN). A radial basis function neural network model (RBNN) is developed and used to determine the optimal inter-elements separating distance and its corresponding excitation coefficients for a single frequency. The developed model is deployed for designing a three stacked S-shaped monopole antenna array. The simulation result show that a maximal directivity of 10 dBi for a separation distance of 0.16 λ, was achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信