肤浅的语义分析真的那么肤浅吗?提高文本分类性能的研究

Przemyslaw Maciolek, G. Dobrowolski
{"title":"肤浅的语义分析真的那么肤浅吗?提高文本分类性能的研究","authors":"Przemyslaw Maciolek, G. Dobrowolski","doi":"10.1109/IMCSIT.2010.5680029","DOIUrl":null,"url":null,"abstract":"The paper presents a graph-based, shallow semantic analysis-driven approach for modeling document contents. This allows to extract additional information about meaning of text and effects in improved document classification. Its performance is compared against the “legacy” bag-of-words and Schenker et al. approaches with k - NN classification based on Polish and English news articles.","PeriodicalId":147803,"journal":{"name":"Proceedings of the International Multiconference on Computer Science and Information Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Is shallow semantic analysis really that shallow? A study on improving text classification performance\",\"authors\":\"Przemyslaw Maciolek, G. Dobrowolski\",\"doi\":\"10.1109/IMCSIT.2010.5680029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a graph-based, shallow semantic analysis-driven approach for modeling document contents. This allows to extract additional information about meaning of text and effects in improved document classification. Its performance is compared against the “legacy” bag-of-words and Schenker et al. approaches with k - NN classification based on Polish and English news articles.\",\"PeriodicalId\":147803,\"journal\":{\"name\":\"Proceedings of the International Multiconference on Computer Science and Information Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Multiconference on Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCSIT.2010.5680029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Multiconference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCSIT.2010.5680029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于图的、浅层语义分析驱动的文档内容建模方法。这允许在改进的文档分类中提取关于文本含义和效果的附加信息。将其性能与“遗留”词袋和Schenker等基于波兰语和英语新闻文章的k - NN分类方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is shallow semantic analysis really that shallow? A study on improving text classification performance
The paper presents a graph-based, shallow semantic analysis-driven approach for modeling document contents. This allows to extract additional information about meaning of text and effects in improved document classification. Its performance is compared against the “legacy” bag-of-words and Schenker et al. approaches with k - NN classification based on Polish and English news articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信