基于半自动Ground-Truth的CT扫描肺体积分割学习

Patrick Sousa, A. Galdran, P. Costa, A. Campilho
{"title":"基于半自动Ground-Truth的CT扫描肺体积分割学习","authors":"Patrick Sousa, A. Galdran, P. Costa, A. Campilho","doi":"10.1109/ISBI.2019.8759309","DOIUrl":null,"url":null,"abstract":"Lung volume segmentation is a key step in the design of Computer-Aided Diagnosis systems for automated lung pathology analysis. However, isolating the lung from CT volumes can be a challenging process due to considerable deformations and the potential presence of pathologies. Convolutional Neural Networks (CNN) are effective tools for modeling the spatial relationship between lung voxels. Unfortunately, they typically require large quantities of annotated data, and manually delineating the lung from volumetric CT scans can be a cumbersome process. We propose to train a 3D CNN to solve this task based on semi-automatically generated annotations. For this, we introduce an extension of the well-known V-Net architecture that can handle higher-dimensional input data. Even if the training set labels are noisy and contain errors, our experiments show that it is possible to learn to accurately segment the lung relying on them. Numerical comparisons on an external test set containing lung segmentations provided by a medical expert demonstrate that the proposed model generalizes well to new data, reaching an average 98.7% Dice coefficient. The proposed approach results in a superior performance with respect to the standard V-Net model, particularly on the lung boundary.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning to Segment the Lung Volume from CT Scans Based on Semi-Automatic Ground-Truth\",\"authors\":\"Patrick Sousa, A. Galdran, P. Costa, A. Campilho\",\"doi\":\"10.1109/ISBI.2019.8759309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung volume segmentation is a key step in the design of Computer-Aided Diagnosis systems for automated lung pathology analysis. However, isolating the lung from CT volumes can be a challenging process due to considerable deformations and the potential presence of pathologies. Convolutional Neural Networks (CNN) are effective tools for modeling the spatial relationship between lung voxels. Unfortunately, they typically require large quantities of annotated data, and manually delineating the lung from volumetric CT scans can be a cumbersome process. We propose to train a 3D CNN to solve this task based on semi-automatically generated annotations. For this, we introduce an extension of the well-known V-Net architecture that can handle higher-dimensional input data. Even if the training set labels are noisy and contain errors, our experiments show that it is possible to learn to accurately segment the lung relying on them. Numerical comparisons on an external test set containing lung segmentations provided by a medical expert demonstrate that the proposed model generalizes well to new data, reaching an average 98.7% Dice coefficient. The proposed approach results in a superior performance with respect to the standard V-Net model, particularly on the lung boundary.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

肺体积分割是设计肺病理自动分析计算机辅助诊断系统的关键步骤。然而,由于相当大的变形和潜在的病理存在,从CT体积中分离肺可能是一个具有挑战性的过程。卷积神经网络(CNN)是模拟肺体素之间空间关系的有效工具。不幸的是,它们通常需要大量带注释的数据,并且从体积CT扫描中手动描绘肺部可能是一个繁琐的过程。我们建议训练一个3D CNN来解决这个基于半自动生成注释的任务。为此,我们引入了著名的V-Net架构的扩展,它可以处理高维的输入数据。即使训练集标签有噪声并且包含错误,我们的实验表明,依靠它们来学习准确分割肺是可能的。在医学专家提供的包含肺段的外部测试集上的数值比较表明,所提出的模型可以很好地泛化新数据,Dice系数平均达到98.7%。与标准的V-Net模型相比,该方法具有更好的性能,特别是在肺边界上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Segment the Lung Volume from CT Scans Based on Semi-Automatic Ground-Truth
Lung volume segmentation is a key step in the design of Computer-Aided Diagnosis systems for automated lung pathology analysis. However, isolating the lung from CT volumes can be a challenging process due to considerable deformations and the potential presence of pathologies. Convolutional Neural Networks (CNN) are effective tools for modeling the spatial relationship between lung voxels. Unfortunately, they typically require large quantities of annotated data, and manually delineating the lung from volumetric CT scans can be a cumbersome process. We propose to train a 3D CNN to solve this task based on semi-automatically generated annotations. For this, we introduce an extension of the well-known V-Net architecture that can handle higher-dimensional input data. Even if the training set labels are noisy and contain errors, our experiments show that it is possible to learn to accurately segment the lung relying on them. Numerical comparisons on an external test set containing lung segmentations provided by a medical expert demonstrate that the proposed model generalizes well to new data, reaching an average 98.7% Dice coefficient. The proposed approach results in a superior performance with respect to the standard V-Net model, particularly on the lung boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信