发光数据增强对深度学习人脸识别系统的影响

Jawad Rasheed, Erdal Alimovski, Ahmad Rasheed, Yahya Sirin, Akhtar Jamil, Mirsat Yesiltepe
{"title":"发光数据增强对深度学习人脸识别系统的影响","authors":"Jawad Rasheed, Erdal Alimovski, Ahmad Rasheed, Yahya Sirin, Akhtar Jamil, Mirsat Yesiltepe","doi":"10.1109/HORA49412.2020.9152900","DOIUrl":null,"url":null,"abstract":"Biometric artificial intelligence application depends on amount of material on which they are trained. In this paper, we integrated Glow data augmentation technique to diversify the facial images dataset to analyze its effects on face classification and identification system based on Convolutional Neural Network (CNN). In first phase, we trained our CNN with publicly available Labeled Faces in the Wild (LFW) database and evaluated the proposed system, which achieved accuracy of 92.2%. In second phase, we diversified LFW dataset with Glow method and then trained our CNN network. The experiment results shows that Glow data augmentation improved the accuracy of proposed network to 93.6%.","PeriodicalId":166917,"journal":{"name":"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Glow Data Augmentation on Face Recognition System based on Deep Learning\",\"authors\":\"Jawad Rasheed, Erdal Alimovski, Ahmad Rasheed, Yahya Sirin, Akhtar Jamil, Mirsat Yesiltepe\",\"doi\":\"10.1109/HORA49412.2020.9152900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric artificial intelligence application depends on amount of material on which they are trained. In this paper, we integrated Glow data augmentation technique to diversify the facial images dataset to analyze its effects on face classification and identification system based on Convolutional Neural Network (CNN). In first phase, we trained our CNN with publicly available Labeled Faces in the Wild (LFW) database and evaluated the proposed system, which achieved accuracy of 92.2%. In second phase, we diversified LFW dataset with Glow method and then trained our CNN network. The experiment results shows that Glow data augmentation improved the accuracy of proposed network to 93.6%.\",\"PeriodicalId\":166917,\"journal\":{\"name\":\"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HORA49412.2020.9152900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA49412.2020.9152900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生物识别人工智能的应用取决于他们所训练的材料的数量。本文结合Glow数据增强技术对人脸图像数据集进行扩充,分析其对基于卷积神经网络(CNN)的人脸分类识别系统的影响。在第一阶段,我们使用公开可用的LFW数据库训练CNN,并对所提出的系统进行评估,准确率达到92.2%。在第二阶段,我们使用Glow方法对LFW数据集进行多样化,然后训练我们的CNN网络。实验结果表明,通过对Glow数据的增强,所提网络的准确率提高到了93.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Glow Data Augmentation on Face Recognition System based on Deep Learning
Biometric artificial intelligence application depends on amount of material on which they are trained. In this paper, we integrated Glow data augmentation technique to diversify the facial images dataset to analyze its effects on face classification and identification system based on Convolutional Neural Network (CNN). In first phase, we trained our CNN with publicly available Labeled Faces in the Wild (LFW) database and evaluated the proposed system, which achieved accuracy of 92.2%. In second phase, we diversified LFW dataset with Glow method and then trained our CNN network. The experiment results shows that Glow data augmentation improved the accuracy of proposed network to 93.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信