用τ-NAF变换器和Square-Square-Add算法实现Koblitz曲线上的ECC处理器

Ting-Yuan Wang, Tsung-Te Liu
{"title":"用τ-NAF变换器和Square-Square-Add算法实现Koblitz曲线上的ECC处理器","authors":"Ting-Yuan Wang, Tsung-Te Liu","doi":"10.1109/APCCAS50809.2020.9301654","DOIUrl":null,"url":null,"abstract":"This paper introduces the ECC (Elliptic Curve Cryptography) processor, in which the τ-NAF converter and Square-Square-Add Algorithm are utilized, for point multiplication on Koblitz curves. The proposed ECC processor operates over GF(2163). The τ-NAF converter can turn the complicated point double to simple point square, and the Square-Square-Add Algorithm can decrease the number of point addition. With the proposed design, the execution time for executing point multiplication will decrease by 21%, and the AT value (Area-Time product) will be lowered by 15% than the state-of-the-art design, which achieves better efficiency on the execution of ECC over Koblitz curves.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECC processor over the Koblitz curves with τ-NAF Converter and Square-Square-Add Algorithm\",\"authors\":\"Ting-Yuan Wang, Tsung-Te Liu\",\"doi\":\"10.1109/APCCAS50809.2020.9301654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the ECC (Elliptic Curve Cryptography) processor, in which the τ-NAF converter and Square-Square-Add Algorithm are utilized, for point multiplication on Koblitz curves. The proposed ECC processor operates over GF(2163). The τ-NAF converter can turn the complicated point double to simple point square, and the Square-Square-Add Algorithm can decrease the number of point addition. With the proposed design, the execution time for executing point multiplication will decrease by 21%, and the AT value (Area-Time product) will be lowered by 15% than the state-of-the-art design, which achieves better efficiency on the execution of ECC over Koblitz curves.\",\"PeriodicalId\":127075,\"journal\":{\"name\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS50809.2020.9301654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了椭圆曲线加密(ECC)处理器,该处理器利用τ-NAF转换器和Square-Square-Add算法对Koblitz曲线进行点乘法运算。提议的ECC处理器在GF(2163)上运行。τ-NAF转换器可以将复杂的点double转换为简单的点square,而square - square - add算法可以减少点加法的数量。采用该设计,执行点乘法的执行时间将减少21%,AT值(Area-Time product)将比最先进的设计降低15%,从而在Koblitz曲线上实现更好的ECC执行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECC processor over the Koblitz curves with τ-NAF Converter and Square-Square-Add Algorithm
This paper introduces the ECC (Elliptic Curve Cryptography) processor, in which the τ-NAF converter and Square-Square-Add Algorithm are utilized, for point multiplication on Koblitz curves. The proposed ECC processor operates over GF(2163). The τ-NAF converter can turn the complicated point double to simple point square, and the Square-Square-Add Algorithm can decrease the number of point addition. With the proposed design, the execution time for executing point multiplication will decrease by 21%, and the AT value (Area-Time product) will be lowered by 15% than the state-of-the-art design, which achieves better efficiency on the execution of ECC over Koblitz curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信