关于广义布尔函数的Gowers U2范数的结果

Zhiyao Yang, Pinhui Ke, Zhixiong Chen, Chenhuang Wu
{"title":"关于广义布尔函数的Gowers U2范数的结果","authors":"Zhiyao Yang, Pinhui Ke, Zhixiong Chen, Chenhuang Wu","doi":"10.1142/s0129054122500216","DOIUrl":null,"url":null,"abstract":"Recently, a framework for employing the Gowers [Formula: see text] norm in the context of (generalized) Boolean functions with cryptographic significance was introduced. In this paper, we first give tight bounds on the Gowers [Formula: see text] norm of generalized Boolean functions via the (generalized) sum-of-squares indicator. Secondly, we provide a framework for the generalized signal-to-noise ratio ([Formula: see text]) of generalized [Formula: see text]-functions. We characterize the [Formula: see text] in terms of the Gowers [Formula: see text] norm. In particular, we present a direct link between the [Formula: see text] of a class of generalized Boolean functions and the [Formula: see text] of its component Boolean functions. Finally, the expressions of the Gowers [Formula: see text] norm of generalized Boolean functions from some well-known secondary constructions (the concatenation and Carlet’s construction) are obtained.","PeriodicalId":192109,"journal":{"name":"Int. J. Found. Comput. Sci.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results on the Gowers U2 Norm of Generalized Boolean Functions\",\"authors\":\"Zhiyao Yang, Pinhui Ke, Zhixiong Chen, Chenhuang Wu\",\"doi\":\"10.1142/s0129054122500216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a framework for employing the Gowers [Formula: see text] norm in the context of (generalized) Boolean functions with cryptographic significance was introduced. In this paper, we first give tight bounds on the Gowers [Formula: see text] norm of generalized Boolean functions via the (generalized) sum-of-squares indicator. Secondly, we provide a framework for the generalized signal-to-noise ratio ([Formula: see text]) of generalized [Formula: see text]-functions. We characterize the [Formula: see text] in terms of the Gowers [Formula: see text] norm. In particular, we present a direct link between the [Formula: see text] of a class of generalized Boolean functions and the [Formula: see text] of its component Boolean functions. Finally, the expressions of the Gowers [Formula: see text] norm of generalized Boolean functions from some well-known secondary constructions (the concatenation and Carlet’s construction) are obtained.\",\"PeriodicalId\":192109,\"journal\":{\"name\":\"Int. J. Found. Comput. Sci.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Found. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054122500216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Found. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054122500216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,介绍了在具有密码学意义的(广义)布尔函数中使用Gowers[公式:见文本]范数的框架。本文首先利用(广义)平方和指标给出了广义布尔函数的Gowers[公式:见文]范数的紧界。其次,我们为广义[公式:见文]函数的广义信噪比([公式:见文])提供了一个框架。我们根据高尔斯[公式:见文本]规范来描述[公式:见文本]。特别地,我们提出了一类广义布尔函数的[公式:见文]与其组成布尔函数的[公式:见文]之间的直接联系。最后,从一些著名的二次构造(串联和Carlet构造)中得到了广义布尔函数的Gowers[公式:见文]范数的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results on the Gowers U2 Norm of Generalized Boolean Functions
Recently, a framework for employing the Gowers [Formula: see text] norm in the context of (generalized) Boolean functions with cryptographic significance was introduced. In this paper, we first give tight bounds on the Gowers [Formula: see text] norm of generalized Boolean functions via the (generalized) sum-of-squares indicator. Secondly, we provide a framework for the generalized signal-to-noise ratio ([Formula: see text]) of generalized [Formula: see text]-functions. We characterize the [Formula: see text] in terms of the Gowers [Formula: see text] norm. In particular, we present a direct link between the [Formula: see text] of a class of generalized Boolean functions and the [Formula: see text] of its component Boolean functions. Finally, the expressions of the Gowers [Formula: see text] norm of generalized Boolean functions from some well-known secondary constructions (the concatenation and Carlet’s construction) are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信