船用车辆推进用水活塞发动机

K. Asfar, Eyad Al-Smadi
{"title":"船用车辆推进用水活塞发动机","authors":"K. Asfar, Eyad Al-Smadi","doi":"10.1115/ajkfluids2019-4824","DOIUrl":null,"url":null,"abstract":"\n This paper describes an environment friendly propulsion system with negligible noise. The Propulsion system is based on a novel engine called a water piston engine. All moving parts in the classical internal combustion engine are eliminated; the piston, connecting rod, and crankshaft. Also, cams and follower valves are replaced by solenoid valves which inject compressed air into the cylinders. A water column in the cylinder is used to replace the metallic piston. The water column itself inside the cylinder acts as a piston. This Water Piston Engine is powered by pressurized air only. So, a pressure vessel is used to store compressed air. The Pressure derived from the compressed air tanks is directly used in providing thrust by pushing the water out of the cylinder through a 90-degree elbow as a water jet. When the water is ejected from the cylinder and the air pressure inside the cylinder decreases to near atmospheric, the water that surrounds the engine fills the cylinder. Four cylinders are used; each two cylinders are fired simultaneously in order to maintain thrust.\n This system uses an Arduino microcontroller unit to deal with how much time the pressurized air is needed to discharge the cylinder and to switch the airflow between the engine cylinders. Several field tests have been made in a lake. The experimental data were compared to the theoretical based data in addition to simulate this model using Ansys fluent. The advantages of this novel engine over internal combustion engines are clarified. Videos of the experiments are recorded.","PeriodicalId":403423,"journal":{"name":"Volume 3A: Fluid Applications and Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Piston Engine for Marine Vehicle Propulsion\",\"authors\":\"K. Asfar, Eyad Al-Smadi\",\"doi\":\"10.1115/ajkfluids2019-4824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper describes an environment friendly propulsion system with negligible noise. The Propulsion system is based on a novel engine called a water piston engine. All moving parts in the classical internal combustion engine are eliminated; the piston, connecting rod, and crankshaft. Also, cams and follower valves are replaced by solenoid valves which inject compressed air into the cylinders. A water column in the cylinder is used to replace the metallic piston. The water column itself inside the cylinder acts as a piston. This Water Piston Engine is powered by pressurized air only. So, a pressure vessel is used to store compressed air. The Pressure derived from the compressed air tanks is directly used in providing thrust by pushing the water out of the cylinder through a 90-degree elbow as a water jet. When the water is ejected from the cylinder and the air pressure inside the cylinder decreases to near atmospheric, the water that surrounds the engine fills the cylinder. Four cylinders are used; each two cylinders are fired simultaneously in order to maintain thrust.\\n This system uses an Arduino microcontroller unit to deal with how much time the pressurized air is needed to discharge the cylinder and to switch the airflow between the engine cylinders. Several field tests have been made in a lake. The experimental data were compared to the theoretical based data in addition to simulate this model using Ansys fluent. The advantages of this novel engine over internal combustion engines are clarified. Videos of the experiments are recorded.\",\"PeriodicalId\":403423,\"journal\":{\"name\":\"Volume 3A: Fluid Applications and Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3A: Fluid Applications and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-4824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3A: Fluid Applications and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种可忽略噪声的环保型推进系统。推进系统是基于一种被称为水活塞发动机的新型发动机。消除了传统内燃机中的所有运动部件;活塞、连杆和曲轴。此外,凸轮和从动阀被电磁阀取代,电磁阀将压缩空气注入气缸。气缸中的水柱用来代替金属活塞。汽缸内的水柱本身起着活塞的作用。这种水活塞发动机仅由加压空气提供动力。所以,压力容器是用来储存压缩空气的。来自压缩空气罐的压力直接用于提供推力,通过90度弯头将水推出气缸作为水射流。当水从汽缸中喷出,汽缸内的气压下降到接近大气压时,发动机周围的水就充满了汽缸。使用四个气缸;每两个汽缸同时发射以保持推力。该系统使用Arduino微控制器单元来处理加压空气排出气缸所需的时间,并在发动机气缸之间切换气流。在一个湖中进行了几次实地试验。将实验数据与理论数据进行对比,并利用Ansys fluent软件对该模型进行仿真。阐明了这种新型发动机相对于内燃机的优点。将实验录像记录下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water Piston Engine for Marine Vehicle Propulsion
This paper describes an environment friendly propulsion system with negligible noise. The Propulsion system is based on a novel engine called a water piston engine. All moving parts in the classical internal combustion engine are eliminated; the piston, connecting rod, and crankshaft. Also, cams and follower valves are replaced by solenoid valves which inject compressed air into the cylinders. A water column in the cylinder is used to replace the metallic piston. The water column itself inside the cylinder acts as a piston. This Water Piston Engine is powered by pressurized air only. So, a pressure vessel is used to store compressed air. The Pressure derived from the compressed air tanks is directly used in providing thrust by pushing the water out of the cylinder through a 90-degree elbow as a water jet. When the water is ejected from the cylinder and the air pressure inside the cylinder decreases to near atmospheric, the water that surrounds the engine fills the cylinder. Four cylinders are used; each two cylinders are fired simultaneously in order to maintain thrust. This system uses an Arduino microcontroller unit to deal with how much time the pressurized air is needed to discharge the cylinder and to switch the airflow between the engine cylinders. Several field tests have been made in a lake. The experimental data were compared to the theoretical based data in addition to simulate this model using Ansys fluent. The advantages of this novel engine over internal combustion engines are clarified. Videos of the experiments are recorded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信