一种深度学习语音分离与独立向量分析相结合的多通道源分离方法

Chunpeng Wang, Jie Zhu
{"title":"一种深度学习语音分离与独立向量分析相结合的多通道源分离方法","authors":"Chunpeng Wang, Jie Zhu","doi":"10.1145/3386164.3386170","DOIUrl":null,"url":null,"abstract":"Multi-channel blind source separation problem is a difficult but commonly met task in daily life. How to separate every target signals well using several observed signals fascinates hundreds of researchers to study on it, especially when the input channels are less than output channels. In this paper, authors analyze the characteristics of different BSS methods and propose a new method to solve under-determined multi-channel source separation problem. The proposed method has a combination structure of deep learning model and independent component analysis algorithm. Comparisons and evaluations show that using proposed method in multichannel source separation boosts separation effect to a certain degree.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combination Method of Deep Learning Speech Separation and Independent Vector Analysis on Multi-channel Source Separation\",\"authors\":\"Chunpeng Wang, Jie Zhu\",\"doi\":\"10.1145/3386164.3386170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-channel blind source separation problem is a difficult but commonly met task in daily life. How to separate every target signals well using several observed signals fascinates hundreds of researchers to study on it, especially when the input channels are less than output channels. In this paper, authors analyze the characteristics of different BSS methods and propose a new method to solve under-determined multi-channel source separation problem. The proposed method has a combination structure of deep learning model and independent component analysis algorithm. Comparisons and evaluations show that using proposed method in multichannel source separation boosts separation effect to a certain degree.\",\"PeriodicalId\":231209,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386164.3386170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3386170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多通道盲信源分离问题是日常生活中经常遇到的难题。如何利用多个观测信号很好地分离出每个目标信号,特别是在输入通道小于输出通道的情况下,是众多研究者研究的热点。本文分析了各种BSS方法的特点,提出了一种解决欠定多信道分离问题的新方法。该方法采用深度学习模型和独立分量分析算法相结合的结构。比较和评价表明,采用该方法进行多通道源分离,在一定程度上提高了分离效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Combination Method of Deep Learning Speech Separation and Independent Vector Analysis on Multi-channel Source Separation
Multi-channel blind source separation problem is a difficult but commonly met task in daily life. How to separate every target signals well using several observed signals fascinates hundreds of researchers to study on it, especially when the input channels are less than output channels. In this paper, authors analyze the characteristics of different BSS methods and propose a new method to solve under-determined multi-channel source separation problem. The proposed method has a combination structure of deep learning model and independent component analysis algorithm. Comparisons and evaluations show that using proposed method in multichannel source separation boosts separation effect to a certain degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信