利用人工免疫识别系统进行组织文本分类

N. Forouzideh, M. Mahmoudi, K. Badie
{"title":"利用人工免疫识别系统进行组织文本分类","authors":"N. Forouzideh, M. Mahmoudi, K. Badie","doi":"10.1109/CIBCB.2011.5948456","DOIUrl":null,"url":null,"abstract":"This paper outlines the use of Artificial Immune Recognition System (AIRS) within the field of text/document classification. Various versions of AIRS including AIRS1, AIRS2, Parallel AIRS and Modified AIRS with Fuzzy KNN are applied to classify the mode of a text's content which is organized for helping users with their organizational tasks. In this regard, 7 major features as inputs with 3 nominal values of Low, Medium, and High are chosen to classify texts into 6 organizational functionality classes. Results of experimentation on a dataset including 540 data show the fact that different versions of AIRS, performs better compared to multi-layer perceptron and radial basis function as simple neural approaches. Due to the high performance of this approach, it is expected to be successfully applicable to a wide range of content mode classification issues in decision support environment.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Organizational texts classification using artificial immune recognition systems\",\"authors\":\"N. Forouzideh, M. Mahmoudi, K. Badie\",\"doi\":\"10.1109/CIBCB.2011.5948456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the use of Artificial Immune Recognition System (AIRS) within the field of text/document classification. Various versions of AIRS including AIRS1, AIRS2, Parallel AIRS and Modified AIRS with Fuzzy KNN are applied to classify the mode of a text's content which is organized for helping users with their organizational tasks. In this regard, 7 major features as inputs with 3 nominal values of Low, Medium, and High are chosen to classify texts into 6 organizational functionality classes. Results of experimentation on a dataset including 540 data show the fact that different versions of AIRS, performs better compared to multi-layer perceptron and radial basis function as simple neural approaches. Due to the high performance of this approach, it is expected to be successfully applicable to a wide range of content mode classification issues in decision support environment.\",\"PeriodicalId\":395505,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2011.5948456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文概述了人工免疫识别系统(AIRS)在文本/文档分类领域的应用。各种版本的AIRS,包括AIRS1, AIRS2, Parallel AIRS和带有模糊KNN的Modified AIRS,用于对文本内容的模式进行分类,这些内容是为了帮助用户完成组织任务而组织的。在这方面,我们选择7个主要特征作为输入,分别具有低、中、高3个标称值,将文本分为6个组织功能类别。在540个数据集上的实验结果表明,不同版本的AIRS比多层感知器和径向基函数作为简单的神经方法表现得更好。由于该方法的高性能,有望成功应用于决策支持环境中广泛的内容模式分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organizational texts classification using artificial immune recognition systems
This paper outlines the use of Artificial Immune Recognition System (AIRS) within the field of text/document classification. Various versions of AIRS including AIRS1, AIRS2, Parallel AIRS and Modified AIRS with Fuzzy KNN are applied to classify the mode of a text's content which is organized for helping users with their organizational tasks. In this regard, 7 major features as inputs with 3 nominal values of Low, Medium, and High are chosen to classify texts into 6 organizational functionality classes. Results of experimentation on a dataset including 540 data show the fact that different versions of AIRS, performs better compared to multi-layer perceptron and radial basis function as simple neural approaches. Due to the high performance of this approach, it is expected to be successfully applicable to a wide range of content mode classification issues in decision support environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信