使用具有阻尼趋势和季节成分的稳健指数平滑预测

Ruben Crevits, C. Croux
{"title":"使用具有阻尼趋势和季节成分的稳健指数平滑预测","authors":"Ruben Crevits, C. Croux","doi":"10.2139/ssrn.3068634","DOIUrl":null,"url":null,"abstract":"We provide a framework for robust exponential smoothing. For a class of exponential smoothing variants, we present a robust alternative. The class includes models with a damped trend and/or seasonal components. We provide robust forecasting equations, robust starting values, robust smoothing parameter estimation and a robust information criterion. The method is implemented in the R package robets, allowing for automatic forecasting. We compare the standard non-robust version with the robust alternative in a simulation study. Finally, the methodology is tested on data.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Forecasting Using Robust Exponential Smoothing with Damped Trend and Seasonal Components\",\"authors\":\"Ruben Crevits, C. Croux\",\"doi\":\"10.2139/ssrn.3068634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a framework for robust exponential smoothing. For a class of exponential smoothing variants, we present a robust alternative. The class includes models with a damped trend and/or seasonal components. We provide robust forecasting equations, robust starting values, robust smoothing parameter estimation and a robust information criterion. The method is implemented in the R package robets, allowing for automatic forecasting. We compare the standard non-robust version with the robust alternative in a simulation study. Finally, the methodology is tested on data.\",\"PeriodicalId\":170198,\"journal\":{\"name\":\"ERN: Forecasting Techniques (Topic)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Forecasting Techniques (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3068634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3068634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提供了一个鲁棒指数平滑的框架。对于一类指数平滑变量,我们提出了一种鲁棒的替代方法。该类包括具有阻尼趋势和/或季节性成分的模型。我们提供了鲁棒预测方程、鲁棒起始值、鲁棒平滑参数估计和鲁棒信息准则。该方法在R包机器人中实现,允许自动预测。我们在仿真研究中比较了标准的非鲁棒版本和鲁棒替代版本。最后,对方法进行了数据检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Using Robust Exponential Smoothing with Damped Trend and Seasonal Components
We provide a framework for robust exponential smoothing. For a class of exponential smoothing variants, we present a robust alternative. The class includes models with a damped trend and/or seasonal components. We provide robust forecasting equations, robust starting values, robust smoothing parameter estimation and a robust information criterion. The method is implemented in the R package robets, allowing for automatic forecasting. We compare the standard non-robust version with the robust alternative in a simulation study. Finally, the methodology is tested on data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信