利用二元决策图有效地表示α - β联想记忆

I. López-Yáñez, C. Yáñez-Márquez
{"title":"利用二元决策图有效地表示α - β联想记忆","authors":"I. López-Yáñez, C. Yáñez-Márquez","doi":"10.1109/CERMA.2006.96","DOIUrl":null,"url":null,"abstract":"Binary decision diagrams have been successful forms to represent Boolean functions, and associative memories have been one of the most important models for pattern recognition, being the alpha-beta associative memories the best available model today. In this paper we propose the use of binary decision diagrams to represent alpha-beta associative memories. By doing so, we are able to merge two important and very active areas of contemporary scientific research, and improve on both models","PeriodicalId":179210,"journal":{"name":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using Binary Decision Diagrams to Efficiently Represent Alpha-Beta Associative Memories\",\"authors\":\"I. López-Yáñez, C. Yáñez-Márquez\",\"doi\":\"10.1109/CERMA.2006.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary decision diagrams have been successful forms to represent Boolean functions, and associative memories have been one of the most important models for pattern recognition, being the alpha-beta associative memories the best available model today. In this paper we propose the use of binary decision diagrams to represent alpha-beta associative memories. By doing so, we are able to merge two important and very active areas of contemporary scientific research, and improve on both models\",\"PeriodicalId\":179210,\"journal\":{\"name\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2006.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2006.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

二值决策图已经成功地表示了布尔函数,而联想记忆已经成为模式识别中最重要的模型之一,是目前可用的最好的alpha-beta联想记忆模型。在本文中,我们提出使用二元决策图来表示α - β联想记忆。通过这样做,我们能够合并当代科学研究的两个重要且非常活跃的领域,并改进这两个模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Binary Decision Diagrams to Efficiently Represent Alpha-Beta Associative Memories
Binary decision diagrams have been successful forms to represent Boolean functions, and associative memories have been one of the most important models for pattern recognition, being the alpha-beta associative memories the best available model today. In this paper we propose the use of binary decision diagrams to represent alpha-beta associative memories. By doing so, we are able to merge two important and very active areas of contemporary scientific research, and improve on both models
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信