基于BP神经网络的NAMP故障诊断技术

Jianfeng Nan, Rong Fan, Chuang Guo
{"title":"基于BP神经网络的NAMP故障诊断技术","authors":"Jianfeng Nan, Rong Fan, Chuang Guo","doi":"10.1109/ICINIS.2008.55","DOIUrl":null,"url":null,"abstract":"In allusion to the insufficiency of the Built-in-test-equipment (BITE) of NAMP and the ground fault diagnosis equipment, the fault diagnosis theory and methods for a certain type NAMP based on BP neural network are investigated, and the fault diagnosis example is provided with the typical test item. The technology simplifies the structure of the fault diagnosis system, and has a farther effective distinguish from the source of fault diagnosed by BITE, and isolates the fault from the LRU level to the SRU level.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis Technology for NAMP Based on BP Neural Network\",\"authors\":\"Jianfeng Nan, Rong Fan, Chuang Guo\",\"doi\":\"10.1109/ICINIS.2008.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In allusion to the insufficiency of the Built-in-test-equipment (BITE) of NAMP and the ground fault diagnosis equipment, the fault diagnosis theory and methods for a certain type NAMP based on BP neural network are investigated, and the fault diagnosis example is provided with the typical test item. The technology simplifies the structure of the fault diagnosis system, and has a farther effective distinguish from the source of fault diagnosed by BITE, and isolates the fault from the LRU level to the SRU level.\",\"PeriodicalId\":185739,\"journal\":{\"name\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINIS.2008.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对NAMP内置测试设备(BITE)和接地故障诊断设备的不足,研究了基于BP神经网络的某型NAMP故障诊断理论和方法,并给出了典型测试项目的故障诊断实例。该技术简化了故障诊断系统的结构,进一步有效地区分了BITE诊断的故障来源,并将故障从LRU级隔离到SRU级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Diagnosis Technology for NAMP Based on BP Neural Network
In allusion to the insufficiency of the Built-in-test-equipment (BITE) of NAMP and the ground fault diagnosis equipment, the fault diagnosis theory and methods for a certain type NAMP based on BP neural network are investigated, and the fault diagnosis example is provided with the typical test item. The technology simplifies the structure of the fault diagnosis system, and has a farther effective distinguish from the source of fault diagnosed by BITE, and isolates the fault from the LRU level to the SRU level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信