胸片上尘肺分期的深度对数正态标签分布学习

Wenjian Sun, Dongsheng Wu, Yang Luo, Lu Liu, Hongjing Zhang, Shuang Wu, Yan Zhang, Chenglong Wang, Houjun Zheng, Jiang Shen, Chunbo Luo
{"title":"胸片上尘肺分期的深度对数正态标签分布学习","authors":"Wenjian Sun, Dongsheng Wu, Yang Luo, Lu Liu, Hongjing Zhang, Shuang Wu, Yan Zhang, Chenglong Wang, Houjun Zheng, Jiang Shen, Chunbo Luo","doi":"10.1109/CBMS55023.2022.00073","DOIUrl":null,"url":null,"abstract":"Pneumoconiosis staging has been a challenging task for deep neural networks due to the stage ambiguity in early pneumoconiosis. In this article, we propose a deep log-normal label distribution learning method named DLN-LDL for pneumo-coniosis staging by exploring the intrinsic stage distribution pat-terns of pneumoconiosis. DLN-LDL effectively prevents the deep network from overfitting features in ambiguous chest radiographs that are irrelevant to the stage to which they belong by replacing the one-hot labels with log-normally distributed vectors. The experiments on our collected pneumoconiosis dataset confirm that the proposed DLN-LDL algorithm outperforms other classical methods in terms of Accuracy, Precision, Sensitivity, Specificity, F1-score and Area Under the Curve.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Log-Normal Label Distribution Learning for Pneumoconiosis Staging on Chest Radiographs\",\"authors\":\"Wenjian Sun, Dongsheng Wu, Yang Luo, Lu Liu, Hongjing Zhang, Shuang Wu, Yan Zhang, Chenglong Wang, Houjun Zheng, Jiang Shen, Chunbo Luo\",\"doi\":\"10.1109/CBMS55023.2022.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumoconiosis staging has been a challenging task for deep neural networks due to the stage ambiguity in early pneumoconiosis. In this article, we propose a deep log-normal label distribution learning method named DLN-LDL for pneumo-coniosis staging by exploring the intrinsic stage distribution pat-terns of pneumoconiosis. DLN-LDL effectively prevents the deep network from overfitting features in ambiguous chest radiographs that are irrelevant to the stage to which they belong by replacing the one-hot labels with log-normally distributed vectors. The experiments on our collected pneumoconiosis dataset confirm that the proposed DLN-LDL algorithm outperforms other classical methods in terms of Accuracy, Precision, Sensitivity, Specificity, F1-score and Area Under the Curve.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于早期尘肺分期的不确定性,对深度神经网络来说,尘肺分期一直是一项具有挑战性的任务。在本文中,我们通过探索尘肺的内在阶段分布模式,提出了一种深度对数正态标签分布学习方法DLN-LDL用于尘肺分期。DLN-LDL通过用对数正态分布向量替换单热标签,有效地防止深度网络过度拟合与它们所属阶段无关的模糊胸片特征。在收集的尘肺数据集上的实验证实,所提出的DLN-LDL算法在准确度、精密度、灵敏度、特异性、f1评分和曲线下面积等方面优于其他经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Log-Normal Label Distribution Learning for Pneumoconiosis Staging on Chest Radiographs
Pneumoconiosis staging has been a challenging task for deep neural networks due to the stage ambiguity in early pneumoconiosis. In this article, we propose a deep log-normal label distribution learning method named DLN-LDL for pneumo-coniosis staging by exploring the intrinsic stage distribution pat-terns of pneumoconiosis. DLN-LDL effectively prevents the deep network from overfitting features in ambiguous chest radiographs that are irrelevant to the stage to which they belong by replacing the one-hot labels with log-normally distributed vectors. The experiments on our collected pneumoconiosis dataset confirm that the proposed DLN-LDL algorithm outperforms other classical methods in terms of Accuracy, Precision, Sensitivity, Specificity, F1-score and Area Under the Curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信