快速音频搜索使用向量空间建模

Brett Matthews, U. Chaudhari, B. Ramabhadran
{"title":"快速音频搜索使用向量空间建模","authors":"Brett Matthews, U. Chaudhari, B. Ramabhadran","doi":"10.1109/ASRU.2007.4430187","DOIUrl":null,"url":null,"abstract":"Many techniques for retrieving arbitrary content from audio have been developed to leverage the important challenge of providing fast access to very large volumes of multimedia data. We present a two-stage method for fast audio search, where a vector-space modelling approach is first used to retrieve a short list of candidate audio segments for a query. The list of candidate segments is then searched using a word-based index for known words and a phone-based index for out-of-vocabulary words. We explore various system configurations and examine trade-offs between speed and accuracy. We evaluate our audio search system according to the NIST 2006 Spoken Term Detection evaluation initiative. We find that we can obtain a 30-times speedup for the search phase of our system with a 10% relative loss in accuracy.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fast audio search using vector space modelling\",\"authors\":\"Brett Matthews, U. Chaudhari, B. Ramabhadran\",\"doi\":\"10.1109/ASRU.2007.4430187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many techniques for retrieving arbitrary content from audio have been developed to leverage the important challenge of providing fast access to very large volumes of multimedia data. We present a two-stage method for fast audio search, where a vector-space modelling approach is first used to retrieve a short list of candidate audio segments for a query. The list of candidate segments is then searched using a word-based index for known words and a phone-based index for out-of-vocabulary words. We explore various system configurations and examine trade-offs between speed and accuracy. We evaluate our audio search system according to the NIST 2006 Spoken Term Detection evaluation initiative. We find that we can obtain a 30-times speedup for the search phase of our system with a 10% relative loss in accuracy.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

已经开发了许多从音频中检索任意内容的技术,以利用提供对大量多媒体数据的快速访问这一重要挑战。我们提出了一种快速音频搜索的两阶段方法,其中首先使用向量空间建模方法来检索查询所需的候选音频片段的短列表。然后使用基于单词的索引搜索已知单词,使用基于电话的索引搜索词汇表外的单词。我们探索各种系统配置,并检查速度和准确性之间的权衡。我们根据NIST 2006口语术语检测评估计划评估我们的音频搜索系统。我们发现,我们可以在系统的搜索阶段获得30倍的加速,而准确度相对损失为10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast audio search using vector space modelling
Many techniques for retrieving arbitrary content from audio have been developed to leverage the important challenge of providing fast access to very large volumes of multimedia data. We present a two-stage method for fast audio search, where a vector-space modelling approach is first used to retrieve a short list of candidate audio segments for a query. The list of candidate segments is then searched using a word-based index for known words and a phone-based index for out-of-vocabulary words. We explore various system configurations and examine trade-offs between speed and accuracy. We evaluate our audio search system according to the NIST 2006 Spoken Term Detection evaluation initiative. We find that we can obtain a 30-times speedup for the search phase of our system with a 10% relative loss in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信