交互式SQL查询建议:使数据库用户友好

Ju Fan, Guoliang Li, Lizhu Zhou
{"title":"交互式SQL查询建议:使数据库用户友好","authors":"Ju Fan, Guoliang Li, Lizhu Zhou","doi":"10.1109/ICDE.2011.5767843","DOIUrl":null,"url":null,"abstract":"SQL is a classical and powerful tool for querying relational databases. However, it is rather hard for inexperienced users to pose SQL queries, as they are required to be proficient in SQL syntax and have a thorough understanding of the underlying schema. To give users gratification, we propose SQLSUGG, an effective and user-friendly keyword-based method to help various users formulate SQL queries. SQLSUGG suggests SQL queries as users type in keywords, and can save users' typing efforts and help users avoid tedious SQL debugging. To achieve high suggestion effectiveness, we propose queryable templates to model the structures of SQL queries. We propose a template ranking model to suggest templates relevant to query keywords. We generate SQL queries from each suggested template based on the degree of matchings between keywords and attributes. For efficiency, we propose a progressive algorithm to compute top-k templates, and devise an efficient method to generate SQL queries from templates. We have implemented our methods on two real data sets, and the experimental results show that our method achieves high effectiveness and efficiency.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Interactive SQL query suggestion: Making databases user-friendly\",\"authors\":\"Ju Fan, Guoliang Li, Lizhu Zhou\",\"doi\":\"10.1109/ICDE.2011.5767843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SQL is a classical and powerful tool for querying relational databases. However, it is rather hard for inexperienced users to pose SQL queries, as they are required to be proficient in SQL syntax and have a thorough understanding of the underlying schema. To give users gratification, we propose SQLSUGG, an effective and user-friendly keyword-based method to help various users formulate SQL queries. SQLSUGG suggests SQL queries as users type in keywords, and can save users' typing efforts and help users avoid tedious SQL debugging. To achieve high suggestion effectiveness, we propose queryable templates to model the structures of SQL queries. We propose a template ranking model to suggest templates relevant to query keywords. We generate SQL queries from each suggested template based on the degree of matchings between keywords and attributes. For efficiency, we propose a progressive algorithm to compute top-k templates, and devise an efficient method to generate SQL queries from templates. We have implemented our methods on two real data sets, and the experimental results show that our method achieves high effectiveness and efficiency.\",\"PeriodicalId\":332374,\"journal\":{\"name\":\"2011 IEEE 27th International Conference on Data Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 27th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2011.5767843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

SQL是查询关系数据库的经典而强大的工具。然而,对于没有经验的用户来说,提出SQL查询是相当困难的,因为他们需要精通SQL语法并对底层模式有透彻的理解。为了让用户满意,我们提出了SQLSUGG,这是一种有效且用户友好的基于关键字的方法,可以帮助各种用户制定SQL查询。SQLSUGG在用户输入关键字时建议SQL查询,可以节省用户的输入工作,并帮助用户避免繁琐的SQL调试。为了提高建议的有效性,我们提出了可查询模板来对SQL查询的结构进行建模。我们提出了一个模板排序模型来推荐与查询关键字相关的模板。我们根据关键字和属性之间的匹配程度,从每个建议的模板生成SQL查询。为了提高效率,我们提出了一种计算top-k模板的渐进式算法,并设计了一种从模板生成SQL查询的高效方法。我们在两个真实数据集上实现了该方法,实验结果表明我们的方法具有较高的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive SQL query suggestion: Making databases user-friendly
SQL is a classical and powerful tool for querying relational databases. However, it is rather hard for inexperienced users to pose SQL queries, as they are required to be proficient in SQL syntax and have a thorough understanding of the underlying schema. To give users gratification, we propose SQLSUGG, an effective and user-friendly keyword-based method to help various users formulate SQL queries. SQLSUGG suggests SQL queries as users type in keywords, and can save users' typing efforts and help users avoid tedious SQL debugging. To achieve high suggestion effectiveness, we propose queryable templates to model the structures of SQL queries. We propose a template ranking model to suggest templates relevant to query keywords. We generate SQL queries from each suggested template based on the degree of matchings between keywords and attributes. For efficiency, we propose a progressive algorithm to compute top-k templates, and devise an efficient method to generate SQL queries from templates. We have implemented our methods on two real data sets, and the experimental results show that our method achieves high effectiveness and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信