日前电力系统机组承诺规划的TM-EPSO求解方法

Chia-Sheng Tu, Hsi‐Shan Huang, Chih-Cheng Huang, Chih-Ming Hong, Ming-Tang Tsai, F. Cheng
{"title":"日前电力系统机组承诺规划的TM-EPSO求解方法","authors":"Chia-Sheng Tu, Hsi‐Shan Huang, Chih-Cheng Huang, Chih-Ming Hong, Ming-Tang Tsai, F. Cheng","doi":"10.1109/ICIASE45644.2019.9074023","DOIUrl":null,"url":null,"abstract":"This paper simulates the unit commitment planning and ancillary services in the day-ahead power market of IEEE power system. The unit commitment of power and ancillary services to safe operation of the system planning for Power, Automatic Generation Control (AGC), Real-time Spinning Reserve (RSR) and Supplemental Reserve (SR). This thesis proposed the application of Taguchi Method (TM) for the discretization rule with Enhanced Particle Swarm Optimization (EPSO) to avoid the equality and Inequality of constraint, which can quickly reach the optimal solution with a better performance and accuracy of unit commitment problem for day-ahead power market. Using TM-EPSO algorithm to solve unit commitment and economic dispatch problem which can quickly reach the optimal solution and accuracy for day-ahead power system.","PeriodicalId":206741,"journal":{"name":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The TM-EPSO for Solving the Unit Commitment Planning in the Day-ahead Power System\",\"authors\":\"Chia-Sheng Tu, Hsi‐Shan Huang, Chih-Cheng Huang, Chih-Ming Hong, Ming-Tang Tsai, F. Cheng\",\"doi\":\"10.1109/ICIASE45644.2019.9074023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper simulates the unit commitment planning and ancillary services in the day-ahead power market of IEEE power system. The unit commitment of power and ancillary services to safe operation of the system planning for Power, Automatic Generation Control (AGC), Real-time Spinning Reserve (RSR) and Supplemental Reserve (SR). This thesis proposed the application of Taguchi Method (TM) for the discretization rule with Enhanced Particle Swarm Optimization (EPSO) to avoid the equality and Inequality of constraint, which can quickly reach the optimal solution with a better performance and accuracy of unit commitment problem for day-ahead power market. Using TM-EPSO algorithm to solve unit commitment and economic dispatch problem which can quickly reach the optimal solution and accuracy for day-ahead power system.\",\"PeriodicalId\":206741,\"journal\":{\"name\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASE45644.2019.9074023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASE45644.2019.9074023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对日前电力市场中IEEE电力系统的机组承诺规划和辅助服务进行了仿真。电力和辅助服务对电力、自动发电控制(AGC)、实时旋转储备(RSR)和补充储备(SR)系统规划安全运行的单位承诺。本文提出将田口法(Taguchi Method, TM)应用于增强粒子群优化(Enhanced Particle Swarm Optimization, EPSO)的离散化规则中,避免约束的等式和不等式,可以快速求解日前电力市场机组承诺问题的最优解,具有更好的性能和精度。采用TM-EPSO算法求解日前电力系统的机组投入和经济调度问题,可快速达到最优解和最优精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The TM-EPSO for Solving the Unit Commitment Planning in the Day-ahead Power System
This paper simulates the unit commitment planning and ancillary services in the day-ahead power market of IEEE power system. The unit commitment of power and ancillary services to safe operation of the system planning for Power, Automatic Generation Control (AGC), Real-time Spinning Reserve (RSR) and Supplemental Reserve (SR). This thesis proposed the application of Taguchi Method (TM) for the discretization rule with Enhanced Particle Swarm Optimization (EPSO) to avoid the equality and Inequality of constraint, which can quickly reach the optimal solution with a better performance and accuracy of unit commitment problem for day-ahead power market. Using TM-EPSO algorithm to solve unit commitment and economic dispatch problem which can quickly reach the optimal solution and accuracy for day-ahead power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信