利用Landsat-8数据提取土地覆盖的卫星图像分类技术比较

Soha Ahmed
{"title":"利用Landsat-8数据提取土地覆盖的卫星图像分类技术比较","authors":"Soha Ahmed","doi":"10.21608/ijicis.2021.78853.1098","DOIUrl":null,"url":null,"abstract":"Accurate extraction of land cover types from thematic maps using satellite images still constitutes a critical challenge. The selection of a suitable satellite image classification algorithm is considered a crucial prerequisite for successful classification results that are required for various applications. The optimal classification algorithm is considered a significant key for improving classification accuracy. The principal foci of this study were to compare, analyze the performance, and assess the effectiveness of four classification algorithms including ISODATA, K-means, pixel-based and segment-based classification techniques to attain accurate land cover extraction from remote sensing data. The classified images were validated with ground control points obtained from field visits in addition to the DigitalGlobe and Google Earth Pro. The overall accuracy of the ISODATA, K-means, pixel, and segment-based classifications were 81.82%, 77.27%, 92.42%, and 87.88%, respectively. The results revealed that the pixel-based classification presented a superior in terms of the overall accuracy and kappa coefficient.","PeriodicalId":244591,"journal":{"name":"International Journal of Intelligent Computing and Information Sciences","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of Satellite Images Classification Techniques using Landsat-8 Data for Land Cover Extraction\",\"authors\":\"Soha Ahmed\",\"doi\":\"10.21608/ijicis.2021.78853.1098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate extraction of land cover types from thematic maps using satellite images still constitutes a critical challenge. The selection of a suitable satellite image classification algorithm is considered a crucial prerequisite for successful classification results that are required for various applications. The optimal classification algorithm is considered a significant key for improving classification accuracy. The principal foci of this study were to compare, analyze the performance, and assess the effectiveness of four classification algorithms including ISODATA, K-means, pixel-based and segment-based classification techniques to attain accurate land cover extraction from remote sensing data. The classified images were validated with ground control points obtained from field visits in addition to the DigitalGlobe and Google Earth Pro. The overall accuracy of the ISODATA, K-means, pixel, and segment-based classifications were 81.82%, 77.27%, 92.42%, and 87.88%, respectively. The results revealed that the pixel-based classification presented a superior in terms of the overall accuracy and kappa coefficient.\",\"PeriodicalId\":244591,\"journal\":{\"name\":\"International Journal of Intelligent Computing and Information Sciences\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Computing and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ijicis.2021.78853.1098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijicis.2021.78853.1098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用卫星图像从专题地图中准确提取土地覆盖类型仍然是一项重大挑战。选择合适的卫星图像分类算法被认为是各种应用所需的成功分类结果的关键前提。最优分类算法被认为是提高分类精度的重要关键。研究了ISODATA、K-means、基于像元(pixel)和基于段(segment)的四种分类技术在土地覆盖遥感数据提取中的应用,并对其性能和有效性进行了比较和分析。除了DigitalGlobe和Google Earth Pro之外,还通过实地考察获得的地面控制点对分类图像进行了验证。基于ISODATA、K-means、pixel和segment的分类总体准确率分别为81.82%、77.27%、92.42%和87.88%。结果表明,基于像素的分类方法在总体准确率和kappa系数上都有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Satellite Images Classification Techniques using Landsat-8 Data for Land Cover Extraction
Accurate extraction of land cover types from thematic maps using satellite images still constitutes a critical challenge. The selection of a suitable satellite image classification algorithm is considered a crucial prerequisite for successful classification results that are required for various applications. The optimal classification algorithm is considered a significant key for improving classification accuracy. The principal foci of this study were to compare, analyze the performance, and assess the effectiveness of four classification algorithms including ISODATA, K-means, pixel-based and segment-based classification techniques to attain accurate land cover extraction from remote sensing data. The classified images were validated with ground control points obtained from field visits in addition to the DigitalGlobe and Google Earth Pro. The overall accuracy of the ISODATA, K-means, pixel, and segment-based classifications were 81.82%, 77.27%, 92.42%, and 87.88%, respectively. The results revealed that the pixel-based classification presented a superior in terms of the overall accuracy and kappa coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信