通过文本理解识别相关实体

Poojan Oza
{"title":"通过文本理解识别相关实体","authors":"Poojan Oza","doi":"10.1145/3511808.3557819","DOIUrl":null,"url":null,"abstract":"An Entity Retrieval system is a fundamental task of Information Retrieval that provides direct answer to an information need of user. Prior work of entity retrieval utilizes either the Knowledge Graph fields or the text relevant to the query via pseudo-relevance feedback to improve the performance. Recently, Knowledge Graph embeddings or other entity representations, which capture the entity information from a knowledge graph are shown to be beneficial for entity retrieval. However, such embeddings are query-agnostic. In this dissertation work, we aim to improve entity retrieval by exploring the pseudo-relevance feedback to generate entity representations that capture query-aware entity information to determine the relevance of entities. We study the effectiveness of pseudo-relevance feedback against Knowledge Graph fields and investigate the efficacy of the Knowledge Graph embeddings for entity retrieval. We aim to understand the importance of utilization of query-aware signals and modeling of such signals with Knowledge Graph embeddings. Our results show that pseudo-relevance feedback is more effective than the Knowledge Graph fields by 30%.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identify Relevant Entities Through Text Understanding\",\"authors\":\"Poojan Oza\",\"doi\":\"10.1145/3511808.3557819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Entity Retrieval system is a fundamental task of Information Retrieval that provides direct answer to an information need of user. Prior work of entity retrieval utilizes either the Knowledge Graph fields or the text relevant to the query via pseudo-relevance feedback to improve the performance. Recently, Knowledge Graph embeddings or other entity representations, which capture the entity information from a knowledge graph are shown to be beneficial for entity retrieval. However, such embeddings are query-agnostic. In this dissertation work, we aim to improve entity retrieval by exploring the pseudo-relevance feedback to generate entity representations that capture query-aware entity information to determine the relevance of entities. We study the effectiveness of pseudo-relevance feedback against Knowledge Graph fields and investigate the efficacy of the Knowledge Graph embeddings for entity retrieval. We aim to understand the importance of utilization of query-aware signals and modeling of such signals with Knowledge Graph embeddings. Our results show that pseudo-relevance feedback is more effective than the Knowledge Graph fields by 30%.\",\"PeriodicalId\":389624,\"journal\":{\"name\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511808.3557819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实体检索系统是信息检索的一项基本任务,它直接满足用户的信息需求。先前的实体检索工作要么利用知识图字段,要么通过伪相关反馈利用与查询相关的文本来提高性能。最近,知识图嵌入或其他实体表示从知识图中捕获实体信息被证明有利于实体检索。然而,这样的嵌入是查询无关的。在本论文中,我们的目标是通过探索伪相关反馈来生成捕获查询感知实体信息的实体表示来改进实体检索,从而确定实体的相关性。我们研究了伪相关反馈对知识图领域的有效性,并研究了知识图嵌入对实体检索的有效性。我们的目标是理解利用查询感知信号和用知识图嵌入对这些信号建模的重要性。我们的研究结果表明,伪相关反馈比知识图谱领域有效30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identify Relevant Entities Through Text Understanding
An Entity Retrieval system is a fundamental task of Information Retrieval that provides direct answer to an information need of user. Prior work of entity retrieval utilizes either the Knowledge Graph fields or the text relevant to the query via pseudo-relevance feedback to improve the performance. Recently, Knowledge Graph embeddings or other entity representations, which capture the entity information from a knowledge graph are shown to be beneficial for entity retrieval. However, such embeddings are query-agnostic. In this dissertation work, we aim to improve entity retrieval by exploring the pseudo-relevance feedback to generate entity representations that capture query-aware entity information to determine the relevance of entities. We study the effectiveness of pseudo-relevance feedback against Knowledge Graph fields and investigate the efficacy of the Knowledge Graph embeddings for entity retrieval. We aim to understand the importance of utilization of query-aware signals and modeling of such signals with Knowledge Graph embeddings. Our results show that pseudo-relevance feedback is more effective than the Knowledge Graph fields by 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信