非负矩阵分解纵向神经成像分析

C. Stamile, F. Cotton, D. Sappey-Marinier, S. Huffel
{"title":"非负矩阵分解纵向神经成像分析","authors":"C. Stamile, F. Cotton, D. Sappey-Marinier, S. Huffel","doi":"10.1109/SITIS.2016.18","DOIUrl":null,"url":null,"abstract":"Longitudinal analysis of neuroimaging data is becoming an important research area. In the last few years analysis of longitudinal data become a crucial point to better understand pathological mechanisms of complex brain diseases such as multiple sclerosis (MS) where white matter (WM) fiber bundles are variably altered by inflammatory events. In this work, we propose a new fully automated method to detect significant longitudinal changes in diffusivity metrics along WM fiber-bundles. This method consists of two steps: i) preprocessing of longitudinal diffusion acquisitions and WM fiber-bundles extraction, ii) application of a new hierarchical non negative matrix factorization (hNMF) algorithm to detect \"pathological\" changes. This method was applied first, on simulated longitudinal variations, and second, on MS patients longitudinal data. High level of precision, recall and F-Measure were obtained for the detection of small longitudinal changes along the WM fiber-bundles.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Longitudinal Neuroimaging Analysis Using Non-Negative Matrix Factorization\",\"authors\":\"C. Stamile, F. Cotton, D. Sappey-Marinier, S. Huffel\",\"doi\":\"10.1109/SITIS.2016.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Longitudinal analysis of neuroimaging data is becoming an important research area. In the last few years analysis of longitudinal data become a crucial point to better understand pathological mechanisms of complex brain diseases such as multiple sclerosis (MS) where white matter (WM) fiber bundles are variably altered by inflammatory events. In this work, we propose a new fully automated method to detect significant longitudinal changes in diffusivity metrics along WM fiber-bundles. This method consists of two steps: i) preprocessing of longitudinal diffusion acquisitions and WM fiber-bundles extraction, ii) application of a new hierarchical non negative matrix factorization (hNMF) algorithm to detect \\\"pathological\\\" changes. This method was applied first, on simulated longitudinal variations, and second, on MS patients longitudinal data. High level of precision, recall and F-Measure were obtained for the detection of small longitudinal changes along the WM fiber-bundles.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经影像学数据的纵向分析正成为一个重要的研究领域。在过去的几年里,纵向数据的分析成为更好地理解复杂脑部疾病的病理机制的关键点,如多发性硬化症(MS),其中白质(WM)纤维束因炎症事件而发生变化。在这项工作中,我们提出了一种新的全自动方法来检测沿WM纤维束扩散系数指标的显著纵向变化。该方法包括两个步骤:i)纵向扩散采集和WM纤维束提取的预处理,ii)应用新的分层非负矩阵分解(hNMF)算法来检测“病理”变化。该方法首先应用于模拟的纵向变化,其次应用于MS患者的纵向数据。对于沿WM纤维束的微小纵向变化的检测,获得了高水平的精度,召回率和F-Measure。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal Neuroimaging Analysis Using Non-Negative Matrix Factorization
Longitudinal analysis of neuroimaging data is becoming an important research area. In the last few years analysis of longitudinal data become a crucial point to better understand pathological mechanisms of complex brain diseases such as multiple sclerosis (MS) where white matter (WM) fiber bundles are variably altered by inflammatory events. In this work, we propose a new fully automated method to detect significant longitudinal changes in diffusivity metrics along WM fiber-bundles. This method consists of two steps: i) preprocessing of longitudinal diffusion acquisitions and WM fiber-bundles extraction, ii) application of a new hierarchical non negative matrix factorization (hNMF) algorithm to detect "pathological" changes. This method was applied first, on simulated longitudinal variations, and second, on MS patients longitudinal data. High level of precision, recall and F-Measure were obtained for the detection of small longitudinal changes along the WM fiber-bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信