动态内存感知任务树调度

G. Aupy, Clement Brasseur, L. Marchal
{"title":"动态内存感知任务树调度","authors":"G. Aupy, Clement Brasseur, L. Marchal","doi":"10.1109/IPDPS.2017.58","DOIUrl":null,"url":null,"abstract":"Factorizing sparse matrices using direct multifrontal methods generates directed tree-shaped task graphs, where edges represent data dependency between tasks. This paper revisits the execution of tree-shaped task graphs using multiple processors that share a bounded memory. A task can only be executed if all its input and output data can fit into the memory. The key difficulty is to manage the order of the task executions so that we can achieve high parallelism while staying below the memory bound. In particular, because input data of unprocessed tasks must be kept in memory, a bad scheduling strategy might compromise the termination of the algorithm. In the single processor case, solutions that are guaranteed to be below a memory bound are known. The multi-processor case (when one tries to minimize the total completion time) has been shown to be NP-complete. We present in this paper a novel heuristic solution that has a low complexity and is guaranteed to complete the tree within a given memory bound.We compare our algorithm to state of the art strategies, and observe that on both actual execution trees and synthetic trees, we always perform better than these solutions, with average speedups between 1.25 and 1.45 on actual assembly trees. Moreover, we show that the overhead of our algorithm is negligible even on deep trees (10 5), and would allow its runtime execution.","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dynamic Memory-Aware Task-Tree Scheduling\",\"authors\":\"G. Aupy, Clement Brasseur, L. Marchal\",\"doi\":\"10.1109/IPDPS.2017.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Factorizing sparse matrices using direct multifrontal methods generates directed tree-shaped task graphs, where edges represent data dependency between tasks. This paper revisits the execution of tree-shaped task graphs using multiple processors that share a bounded memory. A task can only be executed if all its input and output data can fit into the memory. The key difficulty is to manage the order of the task executions so that we can achieve high parallelism while staying below the memory bound. In particular, because input data of unprocessed tasks must be kept in memory, a bad scheduling strategy might compromise the termination of the algorithm. In the single processor case, solutions that are guaranteed to be below a memory bound are known. The multi-processor case (when one tries to minimize the total completion time) has been shown to be NP-complete. We present in this paper a novel heuristic solution that has a low complexity and is guaranteed to complete the tree within a given memory bound.We compare our algorithm to state of the art strategies, and observe that on both actual execution trees and synthetic trees, we always perform better than these solutions, with average speedups between 1.25 and 1.45 on actual assembly trees. Moreover, we show that the overhead of our algorithm is negligible even on deep trees (10 5), and would allow its runtime execution.\",\"PeriodicalId\":209524,\"journal\":{\"name\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2017.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

使用直接多额方法分解稀疏矩阵生成有向树形任务图,其中边表示任务之间的数据依赖关系。本文回顾了使用共享有限内存的多个处理器执行树形任务图的过程。只有当任务的所有输入和输出数据都能装入内存时,任务才能执行。关键的困难是管理任务执行的顺序,以便我们可以在保持低于内存限制的情况下实现高并行性。特别是,由于未处理任务的输入数据必须保存在内存中,因此糟糕的调度策略可能会危及算法的终止。在单处理器的情况下,已知的解决方案保证低于内存边界。多处理器情况(当试图最小化总完成时间时)已被证明是np完成的。本文提出了一种新的启发式解决方案,它具有较低的复杂性,并保证在给定的内存范围内完成树。我们将我们的算法与最先进的策略进行比较,并观察到在实际执行树和合成树上,我们的性能总是比这些解决方案更好,在实际装配树上的平均加速在1.25到1.45之间。此外,我们还表明,即使在深度树(10 5)上,我们的算法的开销也可以忽略不计,并且允许其运行时执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Memory-Aware Task-Tree Scheduling
Factorizing sparse matrices using direct multifrontal methods generates directed tree-shaped task graphs, where edges represent data dependency between tasks. This paper revisits the execution of tree-shaped task graphs using multiple processors that share a bounded memory. A task can only be executed if all its input and output data can fit into the memory. The key difficulty is to manage the order of the task executions so that we can achieve high parallelism while staying below the memory bound. In particular, because input data of unprocessed tasks must be kept in memory, a bad scheduling strategy might compromise the termination of the algorithm. In the single processor case, solutions that are guaranteed to be below a memory bound are known. The multi-processor case (when one tries to minimize the total completion time) has been shown to be NP-complete. We present in this paper a novel heuristic solution that has a low complexity and is guaranteed to complete the tree within a given memory bound.We compare our algorithm to state of the art strategies, and observe that on both actual execution trees and synthetic trees, we always perform better than these solutions, with average speedups between 1.25 and 1.45 on actual assembly trees. Moreover, we show that the overhead of our algorithm is negligible even on deep trees (10 5), and would allow its runtime execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信