{"title":"因果关系和功能安全-因果模型如何与汽车标准ISO 26262, ISO/PAS 21448和UL 4600相关","authors":"R. Maier, J. Mottok","doi":"10.1109/AE54730.2022.9920053","DOIUrl":null,"url":null,"abstract":"With autonomous driving, the system complexity of vehicles will increase drastically. This requires new approaches to ensure system safety. Looking at standards like ISO 26262 or ISO/PAS 21448 and their suggested methodologies, an increasing trend in the recent literature can be noticed to incorporate uncertainty. Often this is done by using Bayesian Networks as a framework to enable probabilistic reasoning. These models can also be used to represent causal relationships. Many publications claim to model cause-effect relations, yet rarely give a formal introduction of the implications and resulting possibilities such an approach may have. This paper aims to link the domains of causal reasoning and automotive system safety by investigating relations between causal models and approaches like FMEA, FTA, or GSN. First, the famous “Ladder of Causation” and its implications on causality are reviewed. Next, we give an informal overview of common hazard and reliability analysis techniques and associate them with probabilistic models. Finally, we analyse a mixed-model methodology called Hybrid Causal Logic, extend its idea, and build the concept of a causal shell model of automotive system safety.","PeriodicalId":113076,"journal":{"name":"2022 International Conference on Applied Electronics (AE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Causality and Functional Safety - How Causal Models Relate to the Automotive Standards ISO 26262, ISO/PAS 21448, and UL 4600\",\"authors\":\"R. Maier, J. Mottok\",\"doi\":\"10.1109/AE54730.2022.9920053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With autonomous driving, the system complexity of vehicles will increase drastically. This requires new approaches to ensure system safety. Looking at standards like ISO 26262 or ISO/PAS 21448 and their suggested methodologies, an increasing trend in the recent literature can be noticed to incorporate uncertainty. Often this is done by using Bayesian Networks as a framework to enable probabilistic reasoning. These models can also be used to represent causal relationships. Many publications claim to model cause-effect relations, yet rarely give a formal introduction of the implications and resulting possibilities such an approach may have. This paper aims to link the domains of causal reasoning and automotive system safety by investigating relations between causal models and approaches like FMEA, FTA, or GSN. First, the famous “Ladder of Causation” and its implications on causality are reviewed. Next, we give an informal overview of common hazard and reliability analysis techniques and associate them with probabilistic models. Finally, we analyse a mixed-model methodology called Hybrid Causal Logic, extend its idea, and build the concept of a causal shell model of automotive system safety.\",\"PeriodicalId\":113076,\"journal\":{\"name\":\"2022 International Conference on Applied Electronics (AE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Applied Electronics (AE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AE54730.2022.9920053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE54730.2022.9920053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Causality and Functional Safety - How Causal Models Relate to the Automotive Standards ISO 26262, ISO/PAS 21448, and UL 4600
With autonomous driving, the system complexity of vehicles will increase drastically. This requires new approaches to ensure system safety. Looking at standards like ISO 26262 or ISO/PAS 21448 and their suggested methodologies, an increasing trend in the recent literature can be noticed to incorporate uncertainty. Often this is done by using Bayesian Networks as a framework to enable probabilistic reasoning. These models can also be used to represent causal relationships. Many publications claim to model cause-effect relations, yet rarely give a formal introduction of the implications and resulting possibilities such an approach may have. This paper aims to link the domains of causal reasoning and automotive system safety by investigating relations between causal models and approaches like FMEA, FTA, or GSN. First, the famous “Ladder of Causation” and its implications on causality are reviewed. Next, we give an informal overview of common hazard and reliability analysis techniques and associate them with probabilistic models. Finally, we analyse a mixed-model methodology called Hybrid Causal Logic, extend its idea, and build the concept of a causal shell model of automotive system safety.