张氏矩阵反解的无穷多个ztf的提出、验证和比较

Binbin Qiu, Yunong Zhang, Zhi Yang
{"title":"张氏矩阵反解的无穷多个ztf的提出、验证和比较","authors":"Binbin Qiu, Yunong Zhang, Zhi Yang","doi":"10.1109/ICICIP.2015.7388196","DOIUrl":null,"url":null,"abstract":"Lately, Zhang et al have proposed the notion of infinitely many Z-type functions (ZTFs) leading to various Z-type neural nets (ZTNNs), and established a systematic approach (i.e., the general-form ZTNN, GFZTNN) for the real-time solution of a time-varying matrix inverse (also termed, Zhang matrix inverse, ZMI). Being a supplementary and in-depth research, this paper provides the theoretical result on the convergence performance of the GFZTNN model. Besides, such a GFZTNN model is generalized and exploited for computing the time-varying Drazin inverse (TVDI) instead of the usual constant one. Finally, computer simulations with two illustrative examples are performed to show the efficacy and advantage of two specific ZTNN models originating from the GFZTNN model for the realtime solution of ZMI and/or TVDI.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal, verification and comparison on infinitely many ZTFs leading to various nets for Zhang matrix inverse solving\",\"authors\":\"Binbin Qiu, Yunong Zhang, Zhi Yang\",\"doi\":\"10.1109/ICICIP.2015.7388196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lately, Zhang et al have proposed the notion of infinitely many Z-type functions (ZTFs) leading to various Z-type neural nets (ZTNNs), and established a systematic approach (i.e., the general-form ZTNN, GFZTNN) for the real-time solution of a time-varying matrix inverse (also termed, Zhang matrix inverse, ZMI). Being a supplementary and in-depth research, this paper provides the theoretical result on the convergence performance of the GFZTNN model. Besides, such a GFZTNN model is generalized and exploited for computing the time-varying Drazin inverse (TVDI) instead of the usual constant one. Finally, computer simulations with two illustrative examples are performed to show the efficacy and advantage of two specific ZTNN models originating from the GFZTNN model for the realtime solution of ZMI and/or TVDI.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,Zhang等人提出了无限多个z型函数(ztf)导致各种z型神经网络(ZTNN)的概念,并建立了一种系统的方法(即一般形式的ZTNN, GFZTNN)来实时求解时变矩阵逆(也称为Zhang矩阵逆,ZMI)。作为补充和深入研究,本文给出了GFZTNN模型收敛性能的理论结果。此外,将该GFZTNN模型推广并应用于计算时变德拉津逆(TVDI),而不是通常的常数模型。最后,通过两个实例进行了计算机仿真,验证了源自GFZTNN模型的两种特定的ZTNN模型在实时求解ZMI和/或TVDI时的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal, verification and comparison on infinitely many ZTFs leading to various nets for Zhang matrix inverse solving
Lately, Zhang et al have proposed the notion of infinitely many Z-type functions (ZTFs) leading to various Z-type neural nets (ZTNNs), and established a systematic approach (i.e., the general-form ZTNN, GFZTNN) for the real-time solution of a time-varying matrix inverse (also termed, Zhang matrix inverse, ZMI). Being a supplementary and in-depth research, this paper provides the theoretical result on the convergence performance of the GFZTNN model. Besides, such a GFZTNN model is generalized and exploited for computing the time-varying Drazin inverse (TVDI) instead of the usual constant one. Finally, computer simulations with two illustrative examples are performed to show the efficacy and advantage of two specific ZTNN models originating from the GFZTNN model for the realtime solution of ZMI and/or TVDI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信