基于多孔几何结构的三维打印双频微波吸收器

Bhukya Shiridinath, Saptarshi Ghosh
{"title":"基于多孔几何结构的三维打印双频微波吸收器","authors":"Bhukya Shiridinath, Saptarshi Ghosh","doi":"10.1109/IMaRC49196.2021.9714528","DOIUrl":null,"url":null,"abstract":"In this paper, a three dimensional (3-D) printed dual-band microwave absorber is presented. The proposed geometry is designed on a perforated dielectric substrate to reduce the overall volume as well as weight of the device. Lowcost Polylactic acid (PLA) material is used in 3-D printing technology to realize the perforated structure, on top of which a conductive ink is deposited in annular ring patterns. The proposed structure exhibits two discrete absorption peaks at 6.86 GHz and 11.26 GHz with corresponding absorptivities of 98.42% and 99.92%. In addition, the topology is angularly stable as well as polarization-insensitive. Parametric variations and surface current distributions are also studied to investigate the operating principle of the proposed 3-D printed absorber.","PeriodicalId":226787,"journal":{"name":"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D Printed Dual-Band Microwave Absorber based on Perforated Geometry\",\"authors\":\"Bhukya Shiridinath, Saptarshi Ghosh\",\"doi\":\"10.1109/IMaRC49196.2021.9714528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a three dimensional (3-D) printed dual-band microwave absorber is presented. The proposed geometry is designed on a perforated dielectric substrate to reduce the overall volume as well as weight of the device. Lowcost Polylactic acid (PLA) material is used in 3-D printing technology to realize the perforated structure, on top of which a conductive ink is deposited in annular ring patterns. The proposed structure exhibits two discrete absorption peaks at 6.86 GHz and 11.26 GHz with corresponding absorptivities of 98.42% and 99.92%. In addition, the topology is angularly stable as well as polarization-insensitive. Parametric variations and surface current distributions are also studied to investigate the operating principle of the proposed 3-D printed absorber.\",\"PeriodicalId\":226787,\"journal\":{\"name\":\"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMaRC49196.2021.9714528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMaRC49196.2021.9714528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种三维打印双频微波吸收器。所提出的几何结构设计在穿孔介质基板上,以减少器件的整体体积和重量。3d打印技术采用低成本的聚乳酸(PLA)材料实现多孔结构,并在其上沉积导电油墨,形成环形图案。该结构在6.86 GHz和11.26 GHz处有两个离散的吸收峰,相应的吸收率分别为98.42%和99.92%。此外,该拓扑结构角稳定且对偏振不敏感。研究了参数变化和表面电流分布,探讨了所提出的3d打印吸收器的工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-D Printed Dual-Band Microwave Absorber based on Perforated Geometry
In this paper, a three dimensional (3-D) printed dual-band microwave absorber is presented. The proposed geometry is designed on a perforated dielectric substrate to reduce the overall volume as well as weight of the device. Lowcost Polylactic acid (PLA) material is used in 3-D printing technology to realize the perforated structure, on top of which a conductive ink is deposited in annular ring patterns. The proposed structure exhibits two discrete absorption peaks at 6.86 GHz and 11.26 GHz with corresponding absorptivities of 98.42% and 99.92%. In addition, the topology is angularly stable as well as polarization-insensitive. Parametric variations and surface current distributions are also studied to investigate the operating principle of the proposed 3-D printed absorber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信