{"title":"导体的静电学","authors":"J. Pierrus","doi":"10.1093/oso/9780198821915.003.0003","DOIUrl":null,"url":null,"abstract":"This chapter begins by proving some important properties of (i) conductors in electrostatic equilibrium, and (ii) harmonic functions. These results underpin most of the remaining questions of Chapter 3. The coefficients of capacitance for an arbitrary arrangement of conductors are introduced at an early stage, and numerical calculations then follow in a number of subsequent questions. Some important techniques (both analytical and numerical) for finding solutions to Laplace’s equation are considered. These include: the Fourier method, the relaxation method, themethod of images and the method of conformal transformation. All of these are discussed in some detail, and with appropriate examples.","PeriodicalId":184566,"journal":{"name":"Solved Problems in Classical Electromagnetism","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The electrostatics of conductors\",\"authors\":\"J. Pierrus\",\"doi\":\"10.1093/oso/9780198821915.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter begins by proving some important properties of (i) conductors in electrostatic equilibrium, and (ii) harmonic functions. These results underpin most of the remaining questions of Chapter 3. The coefficients of capacitance for an arbitrary arrangement of conductors are introduced at an early stage, and numerical calculations then follow in a number of subsequent questions. Some important techniques (both analytical and numerical) for finding solutions to Laplace’s equation are considered. These include: the Fourier method, the relaxation method, themethod of images and the method of conformal transformation. All of these are discussed in some detail, and with appropriate examples.\",\"PeriodicalId\":184566,\"journal\":{\"name\":\"Solved Problems in Classical Electromagnetism\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solved Problems in Classical Electromagnetism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198821915.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solved Problems in Classical Electromagnetism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198821915.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter begins by proving some important properties of (i) conductors in electrostatic equilibrium, and (ii) harmonic functions. These results underpin most of the remaining questions of Chapter 3. The coefficients of capacitance for an arbitrary arrangement of conductors are introduced at an early stage, and numerical calculations then follow in a number of subsequent questions. Some important techniques (both analytical and numerical) for finding solutions to Laplace’s equation are considered. These include: the Fourier method, the relaxation method, themethod of images and the method of conformal transformation. All of these are discussed in some detail, and with appropriate examples.