针对AC状态估计器的线性化攻击向量公式

Gaurav Khare, A. Mohapatra, S. Singh
{"title":"针对AC状态估计器的线性化攻击向量公式","authors":"Gaurav Khare, A. Mohapatra, S. Singh","doi":"10.1109/ISGTEurope.2019.8905700","DOIUrl":null,"url":null,"abstract":"Recently, False Data Injection Attack (FDIA) has gained much attention in the electrical research community, because of the adverse effects of FDIA on the day-to-day operation of smart grids. Recent literature provides various approaches to formulate the Attack Vector (AV), to misguide the DC state estimator as well as AC state estimator. However most approaches which formulate the AV for AC state estimator are iterative in nature. Hence, in this work, an approach for linearized AV formulation has been proposed to formulate stealth as well as semi-stealth FDIAs against the nonlinear AC state estimator. The proposed linearized attack vector formulation technique, will not only be able to deceive the bad data detection but shall also be able to formulate the AV in the least possible amount of time. A maximizing approach has also been proposed to maximize the effect of FDIA. The proposed approach has been tested on the IEEE 118 bus test system, under various loading conditions with varying degree of attack magnitudes, which prove the efficacy of the approach.","PeriodicalId":305933,"journal":{"name":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linearized Attack Vector Formulation against AC State Estimator\",\"authors\":\"Gaurav Khare, A. Mohapatra, S. Singh\",\"doi\":\"10.1109/ISGTEurope.2019.8905700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, False Data Injection Attack (FDIA) has gained much attention in the electrical research community, because of the adverse effects of FDIA on the day-to-day operation of smart grids. Recent literature provides various approaches to formulate the Attack Vector (AV), to misguide the DC state estimator as well as AC state estimator. However most approaches which formulate the AV for AC state estimator are iterative in nature. Hence, in this work, an approach for linearized AV formulation has been proposed to formulate stealth as well as semi-stealth FDIAs against the nonlinear AC state estimator. The proposed linearized attack vector formulation technique, will not only be able to deceive the bad data detection but shall also be able to formulate the AV in the least possible amount of time. A maximizing approach has also been proposed to maximize the effect of FDIA. The proposed approach has been tested on the IEEE 118 bus test system, under various loading conditions with varying degree of attack magnitudes, which prove the efficacy of the approach.\",\"PeriodicalId\":305933,\"journal\":{\"name\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2019.8905700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2019.8905700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,虚假数据注入攻击(False Data Injection Attack, FDIA)受到了电气研究界的广泛关注,因为它对智能电网的日常运行产生了不利影响。最近的文献提供了各种方法来制定攻击向量(AV),以误导DC状态估计器和AC状态估计器。然而,大多数表述AC状态估计器的AV的方法本质上是迭代的。因此,在这项工作中,提出了一种线性化AV公式的方法来针对非线性交流状态估计器来制定隐身和半隐身fdia。本文提出的线性化攻击向量表述技术,不仅能够骗过不良数据检测,而且能够在尽可能短的时间内表述AV。为了使FDIA的效果最大化,还提出了一种最大化方法。该方法在IEEE 118总线测试系统上进行了各种负载条件和不同攻击强度的测试,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearized Attack Vector Formulation against AC State Estimator
Recently, False Data Injection Attack (FDIA) has gained much attention in the electrical research community, because of the adverse effects of FDIA on the day-to-day operation of smart grids. Recent literature provides various approaches to formulate the Attack Vector (AV), to misguide the DC state estimator as well as AC state estimator. However most approaches which formulate the AV for AC state estimator are iterative in nature. Hence, in this work, an approach for linearized AV formulation has been proposed to formulate stealth as well as semi-stealth FDIAs against the nonlinear AC state estimator. The proposed linearized attack vector formulation technique, will not only be able to deceive the bad data detection but shall also be able to formulate the AV in the least possible amount of time. A maximizing approach has also been proposed to maximize the effect of FDIA. The proposed approach has been tested on the IEEE 118 bus test system, under various loading conditions with varying degree of attack magnitudes, which prove the efficacy of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信