基于CEEMDAN和LSTM的时间序列异常检测

Yucong Rao, Jiabao Zhao
{"title":"基于CEEMDAN和LSTM的时间序列异常检测","authors":"Yucong Rao, Jiabao Zhao","doi":"10.1109/ICNSC52481.2021.9702161","DOIUrl":null,"url":null,"abstract":"Time series anomaly detection is getting more and more attention in IT operations. Deep learning is one of the most used technologies in recent years, which realizes automatic anomaly detection on raw data. A novel algorithm combining time series decomposition and Long Short Term Memory (LSTM) is proposed in this paper. This algorithm mainly consists of four steps: 1) we use a density-based clustering algorithm to remove the sharp points in the data, and then use interpolation to complete the data; 2) we use the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm to decompose the raw data into a series of relatively simple components, called intrinsic mode functions (IMFs); 3) we use LSTM to predict the IMFs, and the sum of the results represents the predicted results of the original data; 4) we use a dynamic threshold rule and the error between the original value and the predicted value to determine whether the point is an anomaly. The experimental results on the Yahoo Webscope_S5 dataset prove the effectiveness of the proposed model.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time Series Anomaly Detection Based on CEEMDAN and LSTM\",\"authors\":\"Yucong Rao, Jiabao Zhao\",\"doi\":\"10.1109/ICNSC52481.2021.9702161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series anomaly detection is getting more and more attention in IT operations. Deep learning is one of the most used technologies in recent years, which realizes automatic anomaly detection on raw data. A novel algorithm combining time series decomposition and Long Short Term Memory (LSTM) is proposed in this paper. This algorithm mainly consists of four steps: 1) we use a density-based clustering algorithm to remove the sharp points in the data, and then use interpolation to complete the data; 2) we use the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm to decompose the raw data into a series of relatively simple components, called intrinsic mode functions (IMFs); 3) we use LSTM to predict the IMFs, and the sum of the results represents the predicted results of the original data; 4) we use a dynamic threshold rule and the error between the original value and the predicted value to determine whether the point is an anomaly. The experimental results on the Yahoo Webscope_S5 dataset prove the effectiveness of the proposed model.\",\"PeriodicalId\":129062,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC52481.2021.9702161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间序列异常检测在IT运营中越来越受到重视。深度学习是近年来应用最广泛的技术之一,它实现了对原始数据的自动异常检测。提出了一种结合时间序列分解和长短期记忆的新算法。该算法主要包括四个步骤:1)使用基于密度的聚类算法去除数据中的尖锐点,然后使用插值补全数据;2)采用自适应噪声的完整集成经验模态分解(CEEMDAN)算法将原始数据分解为一系列相对简单的分量,称为内禀模态函数(IMFs);3)我们使用LSTM对IMFs进行预测,结果的和表示原始数据的预测结果;4)利用动态阈值规则和原始值与预测值之间的误差来判断该点是否为异常。在Yahoo Webscope_S5数据集上的实验结果证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Anomaly Detection Based on CEEMDAN and LSTM
Time series anomaly detection is getting more and more attention in IT operations. Deep learning is one of the most used technologies in recent years, which realizes automatic anomaly detection on raw data. A novel algorithm combining time series decomposition and Long Short Term Memory (LSTM) is proposed in this paper. This algorithm mainly consists of four steps: 1) we use a density-based clustering algorithm to remove the sharp points in the data, and then use interpolation to complete the data; 2) we use the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm to decompose the raw data into a series of relatively simple components, called intrinsic mode functions (IMFs); 3) we use LSTM to predict the IMFs, and the sum of the results represents the predicted results of the original data; 4) we use a dynamic threshold rule and the error between the original value and the predicted value to determine whether the point is an anomaly. The experimental results on the Yahoo Webscope_S5 dataset prove the effectiveness of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信