基于聚合信道特征的蝗虫识别与检测

Dewei Yi, Jinya Su, Wen‐Hua Chen
{"title":"基于聚合信道特征的蝗虫识别与检测","authors":"Dewei Yi, Jinya Su, Wen‐Hua Chen","doi":"10.31256/ukras19.30","DOIUrl":null,"url":null,"abstract":"Locust plagues are very harmful for food security, quality and quantity of agricultural products. With this consideration, precise locust detection is significant for preventing locust plagues. To achieve this task, aggregate channel feature (ACF) object detector with parameters optimization is applied to detect locusts. Experiment results show that ACF object detector with optimized parameters can achieve 0.39 for average precision and 0.86 for log-average miss rate. Moreover, ACF is a non-deep method using a simple model to detect objects. That is, the proposed method is promising to be embedded in a real-time locust detection system.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Locust Recognition and Detection via Aggregate Channel Features\",\"authors\":\"Dewei Yi, Jinya Su, Wen‐Hua Chen\",\"doi\":\"10.31256/ukras19.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locust plagues are very harmful for food security, quality and quantity of agricultural products. With this consideration, precise locust detection is significant for preventing locust plagues. To achieve this task, aggregate channel feature (ACF) object detector with parameters optimization is applied to detect locusts. Experiment results show that ACF object detector with optimized parameters can achieve 0.39 for average precision and 0.86 for log-average miss rate. Moreover, ACF is a non-deep method using a simple model to detect objects. That is, the proposed method is promising to be embedded in a real-time locust detection system.\",\"PeriodicalId\":424229,\"journal\":{\"name\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31256/ukras19.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras19.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

蝗灾对粮食安全、农产品质量和数量造成严重危害。考虑到这一点,精确的蝗虫检测对于预防蝗灾具有重要意义。为此,采用参数优化的聚合通道特征(ACF)目标检测器对蝗虫进行检测。实验结果表明,优化后的ACF目标检测器的平均精度为0.39,对数平均脱靶率为0.86。此外,ACF是一种使用简单模型来检测对象的非深度方法。也就是说,所提出的方法有望嵌入到实时蝗虫检测系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locust Recognition and Detection via Aggregate Channel Features
Locust plagues are very harmful for food security, quality and quantity of agricultural products. With this consideration, precise locust detection is significant for preventing locust plagues. To achieve this task, aggregate channel feature (ACF) object detector with parameters optimization is applied to detect locusts. Experiment results show that ACF object detector with optimized parameters can achieve 0.39 for average precision and 0.86 for log-average miss rate. Moreover, ACF is a non-deep method using a simple model to detect objects. That is, the proposed method is promising to be embedded in a real-time locust detection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信