基于x均值聚类的自动运动目标提取

K. Imamura, Naoki Kubo, H. Hashimoto
{"title":"基于x均值聚类的自动运动目标提取","authors":"K. Imamura, Naoki Kubo, H. Hashimoto","doi":"10.1109/PCS.2010.5702477","DOIUrl":null,"url":null,"abstract":"The present paper proposes an automatic extraction technique of moving objects using x-means clustering. The proposed technique is an extended k-means clustering and can determine the optimal number of clusters based on the Bayesian Information Criterion(BIC). In the proposed method, the feature points are extracted from a current frame, and x-means clustering classifies the feature points based on their estimated affine motion parameters. A label is assigned to the segmented region, which is obtained by morphological watershed, by voting for the feature point cluster in each region. The labeling result represents the moving object extraction. Experimental results reveal that the proposed method provides extraction results with the suitable object number.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Automatic moving object extraction using x-means clustering\",\"authors\":\"K. Imamura, Naoki Kubo, H. Hashimoto\",\"doi\":\"10.1109/PCS.2010.5702477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper proposes an automatic extraction technique of moving objects using x-means clustering. The proposed technique is an extended k-means clustering and can determine the optimal number of clusters based on the Bayesian Information Criterion(BIC). In the proposed method, the feature points are extracted from a current frame, and x-means clustering classifies the feature points based on their estimated affine motion parameters. A label is assigned to the segmented region, which is obtained by morphological watershed, by voting for the feature point cluster in each region. The labeling result represents the moving object extraction. Experimental results reveal that the proposed method provides extraction results with the suitable object number.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种基于x均值聚类的运动目标自动提取技术。该方法是一种扩展的k-means聚类方法,可以根据贝叶斯信息准则(BIC)确定最优聚类数量。在该方法中,从当前帧中提取特征点,并根据估计的仿射运动参数对特征点进行x均值聚类分类。通过形态学分水岭对每个区域的特征点聚类进行投票,为分割后的区域分配标签。标记结果表示运动目标的提取。实验结果表明,该方法能够提供具有合适目标数的提取结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic moving object extraction using x-means clustering
The present paper proposes an automatic extraction technique of moving objects using x-means clustering. The proposed technique is an extended k-means clustering and can determine the optimal number of clusters based on the Bayesian Information Criterion(BIC). In the proposed method, the feature points are extracted from a current frame, and x-means clustering classifies the feature points based on their estimated affine motion parameters. A label is assigned to the segmented region, which is obtained by morphological watershed, by voting for the feature point cluster in each region. The labeling result represents the moving object extraction. Experimental results reveal that the proposed method provides extraction results with the suitable object number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信