抽象论证语义的深度学习

Dennis Craandijk, Floris Bex
{"title":"抽象论证语义的深度学习","authors":"Dennis Craandijk, Floris Bex","doi":"10.24963/ijcai.2020/231","DOIUrl":null,"url":null,"abstract":"In this paper, we present a learning-based approach to determining acceptance of arguments under several abstract argumentation semantics. More specifically, we propose an argumentation graph neural network (AGNN) that learns a message-passing algorithm to predict the likelihood of an argument being accepted. The experimental results demonstrate that the AGNN can almost perfectly predict the acceptability under different semantics and scales well for larger argumentation frameworks. Furthermore, analysing the behaviour of the message-passing algorithm shows that the AGNN learns to adhere to basic principles of argument semantics as identified in the literature, and can thus be trained to predict extensions under the different semantics – we show how the latter can be done for multi-extension semantics by using AGNNs to guide a basic search. We publish our code at https://github.com/DennisCraandijk/DL-Abstract-Argumentation.","PeriodicalId":126364,"journal":{"name":"Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Deep Learning for Abstract Argumentation Semantics\",\"authors\":\"Dennis Craandijk, Floris Bex\",\"doi\":\"10.24963/ijcai.2020/231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a learning-based approach to determining acceptance of arguments under several abstract argumentation semantics. More specifically, we propose an argumentation graph neural network (AGNN) that learns a message-passing algorithm to predict the likelihood of an argument being accepted. The experimental results demonstrate that the AGNN can almost perfectly predict the acceptability under different semantics and scales well for larger argumentation frameworks. Furthermore, analysing the behaviour of the message-passing algorithm shows that the AGNN learns to adhere to basic principles of argument semantics as identified in the literature, and can thus be trained to predict extensions under the different semantics – we show how the latter can be done for multi-extension semantics by using AGNNs to guide a basic search. We publish our code at https://github.com/DennisCraandijk/DL-Abstract-Argumentation.\",\"PeriodicalId\":126364,\"journal\":{\"name\":\"Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2020/231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2020/231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们提出了一种基于学习的方法来确定几种抽象论证语义下论证的可接受性。更具体地说,我们提出了一个论证图神经网络(AGNN),它学习了一个消息传递算法来预测一个论证被接受的可能性。实验结果表明,AGNN几乎可以完美地预测不同语义下的可接受性,并且可以很好地扩展到更大的论证框架。此外,分析消息传递算法的行为表明,AGNN学习遵守文献中确定的参数语义的基本原则,因此可以被训练来预测不同语义下的扩展-我们展示了后者如何通过使用AGNN来指导基本搜索来完成多扩展语义。我们在https://github.com/DennisCraandijk/DL-Abstract-Argumentation上发布我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Abstract Argumentation Semantics
In this paper, we present a learning-based approach to determining acceptance of arguments under several abstract argumentation semantics. More specifically, we propose an argumentation graph neural network (AGNN) that learns a message-passing algorithm to predict the likelihood of an argument being accepted. The experimental results demonstrate that the AGNN can almost perfectly predict the acceptability under different semantics and scales well for larger argumentation frameworks. Furthermore, analysing the behaviour of the message-passing algorithm shows that the AGNN learns to adhere to basic principles of argument semantics as identified in the literature, and can thus be trained to predict extensions under the different semantics – we show how the latter can be done for multi-extension semantics by using AGNNs to guide a basic search. We publish our code at https://github.com/DennisCraandijk/DL-Abstract-Argumentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信