{"title":"空间应用中基于mpsoc的可靠混合临界系统","authors":"Stefano Esposito, M. Violante","doi":"10.1109/METROAEROSPACE.2018.8453618","DOIUrl":null,"url":null,"abstract":"Space applications' requirements, especially when scientific payload is considered, are rapidly increasing. A way to satisfy such requirements without increasing too much space, weight, and power consumption of the on-board equipment, is to exploit capabilities of new multi-processor system-on-chips (MPSoCs). A MPSoC-based computer would allow integration on a single equipment of several applications. However, there is not any space-qualified MPSoC, yet. This paper describes a mixed-criticality system (MCS) implementing a prototypical scientific payload computer for a space mission. The main focus is on the issue of using commercial-off-the-shelf (COTS) MPSoC in radioactive environment to deploy MCS implementing a payload computer. The paper states the beforementioned issue and a set of countermeasures to detect issues. The system is evaluated for dependability against single event effects (SEEs) through fault-injection simulation experiments. Results of such experiments are used to compute availability figures of a payload computer implementing described countermeasures, considering the radiation environment of the geostationary orbit.","PeriodicalId":142603,"journal":{"name":"2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dependable MPSoC-Based Mixed-Criticality Systems for Space Applications\",\"authors\":\"Stefano Esposito, M. Violante\",\"doi\":\"10.1109/METROAEROSPACE.2018.8453618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space applications' requirements, especially when scientific payload is considered, are rapidly increasing. A way to satisfy such requirements without increasing too much space, weight, and power consumption of the on-board equipment, is to exploit capabilities of new multi-processor system-on-chips (MPSoCs). A MPSoC-based computer would allow integration on a single equipment of several applications. However, there is not any space-qualified MPSoC, yet. This paper describes a mixed-criticality system (MCS) implementing a prototypical scientific payload computer for a space mission. The main focus is on the issue of using commercial-off-the-shelf (COTS) MPSoC in radioactive environment to deploy MCS implementing a payload computer. The paper states the beforementioned issue and a set of countermeasures to detect issues. The system is evaluated for dependability against single event effects (SEEs) through fault-injection simulation experiments. Results of such experiments are used to compute availability figures of a payload computer implementing described countermeasures, considering the radiation environment of the geostationary orbit.\",\"PeriodicalId\":142603,\"journal\":{\"name\":\"2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METROAEROSPACE.2018.8453618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2018.8453618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dependable MPSoC-Based Mixed-Criticality Systems for Space Applications
Space applications' requirements, especially when scientific payload is considered, are rapidly increasing. A way to satisfy such requirements without increasing too much space, weight, and power consumption of the on-board equipment, is to exploit capabilities of new multi-processor system-on-chips (MPSoCs). A MPSoC-based computer would allow integration on a single equipment of several applications. However, there is not any space-qualified MPSoC, yet. This paper describes a mixed-criticality system (MCS) implementing a prototypical scientific payload computer for a space mission. The main focus is on the issue of using commercial-off-the-shelf (COTS) MPSoC in radioactive environment to deploy MCS implementing a payload computer. The paper states the beforementioned issue and a set of countermeasures to detect issues. The system is evaluated for dependability against single event effects (SEEs) through fault-injection simulation experiments. Results of such experiments are used to compute availability figures of a payload computer implementing described countermeasures, considering the radiation environment of the geostationary orbit.