{"title":"仿射格拉斯曼人的科","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.23","DOIUrl":null,"url":null,"abstract":"This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Families of affine Grassmannians\",\"authors\":\"P. Scholze, Jared Weinstein\",\"doi\":\"10.2307/j.ctvs32rc9.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvs32rc9.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.