计算电路的动态并行复杂性

G. Miller, S. Teng
{"title":"计算电路的动态并行复杂性","authors":"G. Miller, S. Teng","doi":"10.1145/28395.28423","DOIUrl":null,"url":null,"abstract":"The dynamic parallel complexity of general computational circuits (defined in introduction) is discussed. We exhibit some relationships between parallel circuit evaluation and some uniform closure properties of a certain class of unary functions and present a systematic method for the design of processor efficient parallel algorithms for circuit evaluation. Using this method: (1) we improve the algorithm for parallel Boolean circuit evaluation; (2) we give a nontrivial upper bound for parallel min-max-plus circuit evaluation; (3) we partially answer the first open question raised in [MiRK85] by showing that all circuits over finite noncommutative semi-ring and circuits over infinite non-commutative semi-ring which has finite dimension over a commutative semi-ring can be evaluated in polylogarithmic time in its size and degree using M(n) processors. Moreover, we develop a theory for determining closure properties of certain classes of unary functions.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Dynamic parallel complexity of computational circuits\",\"authors\":\"G. Miller, S. Teng\",\"doi\":\"10.1145/28395.28423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic parallel complexity of general computational circuits (defined in introduction) is discussed. We exhibit some relationships between parallel circuit evaluation and some uniform closure properties of a certain class of unary functions and present a systematic method for the design of processor efficient parallel algorithms for circuit evaluation. Using this method: (1) we improve the algorithm for parallel Boolean circuit evaluation; (2) we give a nontrivial upper bound for parallel min-max-plus circuit evaluation; (3) we partially answer the first open question raised in [MiRK85] by showing that all circuits over finite noncommutative semi-ring and circuits over infinite non-commutative semi-ring which has finite dimension over a commutative semi-ring can be evaluated in polylogarithmic time in its size and degree using M(n) processors. Moreover, we develop a theory for determining closure properties of certain classes of unary functions.\",\"PeriodicalId\":161795,\"journal\":{\"name\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/28395.28423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

讨论了一般计算电路的动态并行复杂度(定义见引言)。我们展示了并行电路求值与一类一元函数的一致闭包性质之间的关系,并给出了一种系统的设计处理器高效并行电路求值算法的方法。利用该方法:(1)改进了并行布尔电路求值算法;(2)给出了并行最小-最大+电路的非平凡上界;(3)我们部分地回答了[MiRK85]中提出的第一个开放性问题,证明了所有有限非交换半环上的电路和有限维可交换半环上的无限非交换半环上的电路都可以用M(n)处理器在多对数时间内求出其大小和程度。此外,我们还提出了确定一元函数某类闭包性质的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic parallel complexity of computational circuits
The dynamic parallel complexity of general computational circuits (defined in introduction) is discussed. We exhibit some relationships between parallel circuit evaluation and some uniform closure properties of a certain class of unary functions and present a systematic method for the design of processor efficient parallel algorithms for circuit evaluation. Using this method: (1) we improve the algorithm for parallel Boolean circuit evaluation; (2) we give a nontrivial upper bound for parallel min-max-plus circuit evaluation; (3) we partially answer the first open question raised in [MiRK85] by showing that all circuits over finite noncommutative semi-ring and circuits over infinite non-commutative semi-ring which has finite dimension over a commutative semi-ring can be evaluated in polylogarithmic time in its size and degree using M(n) processors. Moreover, we develop a theory for determining closure properties of certain classes of unary functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信