家用电器小型变速永磁同步电机的两步分析设计与优化

Javier Martínez, K. Krischan, A. Muetze
{"title":"家用电器小型变速永磁同步电机的两步分析设计与优化","authors":"Javier Martínez, K. Krischan, A. Muetze","doi":"10.1109/EPE.2016.7695401","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an inner rotor Permanent Magnet (PM) motor using a two-step approach. The first step consists of retrieving the basic geometric and electric constants using a combination of both an analytic and a multi-objective Genetic Algorithm (GA). This technique allows the most efficient and cheapest motor for a certain type of home appliances application to be found when harmonics are neglected during the optimization design. This assumption implies that iron losses are only relevant in the stator domains. The peculiarity of the optimization of the motor is the fact that the most efficient operating point is located at one tenth of the maximum load of the electric motor. The second step consists of comparing the resulting optimized motor using Finite Element Analysis. This step is crucial to accurately compare the efficiency of the resulting drive with the analytic results. The advantage of using this tool is that we can also include the effect of the different space harmonics in the efficiency computation. These harmonics rotate at a different speed than the rotor and can produce additional losses in the rotor's iron parts. The agreement between the results of the two-step analysis infers that the effect of the space harmonics is not relevant for this drive. The decay of efficiency due to these space harmonics is in the order of 0.05%.","PeriodicalId":119358,"journal":{"name":"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A two-step analytic design and optimization of small variable speed PMSMs for home appliances\",\"authors\":\"Javier Martínez, K. Krischan, A. Muetze\",\"doi\":\"10.1109/EPE.2016.7695401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of an inner rotor Permanent Magnet (PM) motor using a two-step approach. The first step consists of retrieving the basic geometric and electric constants using a combination of both an analytic and a multi-objective Genetic Algorithm (GA). This technique allows the most efficient and cheapest motor for a certain type of home appliances application to be found when harmonics are neglected during the optimization design. This assumption implies that iron losses are only relevant in the stator domains. The peculiarity of the optimization of the motor is the fact that the most efficient operating point is located at one tenth of the maximum load of the electric motor. The second step consists of comparing the resulting optimized motor using Finite Element Analysis. This step is crucial to accurately compare the efficiency of the resulting drive with the analytic results. The advantage of using this tool is that we can also include the effect of the different space harmonics in the efficiency computation. These harmonics rotate at a different speed than the rotor and can produce additional losses in the rotor's iron parts. The agreement between the results of the two-step analysis infers that the effect of the space harmonics is not relevant for this drive. The decay of efficiency due to these space harmonics is in the order of 0.05%.\",\"PeriodicalId\":119358,\"journal\":{\"name\":\"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2016.7695401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2016.7695401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用两步法设计了一种内转子永磁电机。第一步包括使用解析和多目标遗传算法(GA)相结合的方法检索基本几何常数和电常数。这种技术允许在优化设计过程中忽略谐波的情况下,找到某种类型的家用电器应用中最有效和最便宜的电机。这一假设意味着铁损耗只与定子域有关。电机优化的特点在于,最有效的工作点位于电机最大负载的十分之一处。第二步包括使用有限元分析比较得到的优化电机。这一步是至关重要的,以准确地比较所得驱动器的效率与分析结果。使用该工具的优点是我们还可以在效率计算中考虑不同空间谐波的影响。这些谐波以不同于转子的速度旋转,并且可以在转子的铁部件中产生额外的损失。两步分析结果之间的一致性推断出空间谐波的影响与此驱动无关。由这些空间谐波引起的效率衰减约为0.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-step analytic design and optimization of small variable speed PMSMs for home appliances
This paper presents the design of an inner rotor Permanent Magnet (PM) motor using a two-step approach. The first step consists of retrieving the basic geometric and electric constants using a combination of both an analytic and a multi-objective Genetic Algorithm (GA). This technique allows the most efficient and cheapest motor for a certain type of home appliances application to be found when harmonics are neglected during the optimization design. This assumption implies that iron losses are only relevant in the stator domains. The peculiarity of the optimization of the motor is the fact that the most efficient operating point is located at one tenth of the maximum load of the electric motor. The second step consists of comparing the resulting optimized motor using Finite Element Analysis. This step is crucial to accurately compare the efficiency of the resulting drive with the analytic results. The advantage of using this tool is that we can also include the effect of the different space harmonics in the efficiency computation. These harmonics rotate at a different speed than the rotor and can produce additional losses in the rotor's iron parts. The agreement between the results of the two-step analysis infers that the effect of the space harmonics is not relevant for this drive. The decay of efficiency due to these space harmonics is in the order of 0.05%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信