利用因子模型对日本经济进行短期预测

Claudia Godbout, Marco J. Lombardi
{"title":"利用因子模型对日本经济进行短期预测","authors":"Claudia Godbout, Marco J. Lombardi","doi":"10.2139/ssrn.2281770","DOIUrl":null,"url":null,"abstract":"While the usefulness of factor models has been acknowledged over recent years, little attention has been devoted to the forecasting power of these models for the Japanese economy. In this paper, we aim at assessing the relative performance of factor models over different samples, including the recent financial crisis. To do so, we construct factor models to forecast Japanese GDP and its subcomponents, using 38 data series (including daily, monthly and quarterly variables) over the period 1991 to 2010. Overall, we find that factor models perform well at tracking GDP movements and anticipating turning points. For most of the components, we report that factor models yield lower forecasting errors than a simple AR process or an indicator model based on Purchasing Managers' Indicators (PMIs). In line with previous studies, we conclude that the largest improvements in terms of forecasting accuracy are found for more volatile periods, such as the recent financial crisis. However, unlike previous studies, we do not find evident links between the volatility of the components and the relative advantage of using factor models. Finally, we show that adding the PMI index as an independent explanatory variable improves the forecasting properties of the factor models. JEL Classification: C50, C53, E37, E47","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Short-Term Forecasting of the Japanese Economy Using Factor Models\",\"authors\":\"Claudia Godbout, Marco J. Lombardi\",\"doi\":\"10.2139/ssrn.2281770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the usefulness of factor models has been acknowledged over recent years, little attention has been devoted to the forecasting power of these models for the Japanese economy. In this paper, we aim at assessing the relative performance of factor models over different samples, including the recent financial crisis. To do so, we construct factor models to forecast Japanese GDP and its subcomponents, using 38 data series (including daily, monthly and quarterly variables) over the period 1991 to 2010. Overall, we find that factor models perform well at tracking GDP movements and anticipating turning points. For most of the components, we report that factor models yield lower forecasting errors than a simple AR process or an indicator model based on Purchasing Managers' Indicators (PMIs). In line with previous studies, we conclude that the largest improvements in terms of forecasting accuracy are found for more volatile periods, such as the recent financial crisis. However, unlike previous studies, we do not find evident links between the volatility of the components and the relative advantage of using factor models. Finally, we show that adding the PMI index as an independent explanatory variable improves the forecasting properties of the factor models. JEL Classification: C50, C53, E37, E47\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2281770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2281770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

虽然近年来因子模型的有用性已经得到承认,但很少有人关注这些模型对日本经济的预测能力。在本文中,我们旨在评估因子模型在不同样本上的相对表现,包括最近的金融危机。为此,我们构建了因子模型来预测日本GDP及其子成分,使用38个数据系列(包括每日,每月和季度变量)在1991年至2010年期间。总体而言,我们发现因子模型在跟踪GDP变动和预测拐点方面表现良好。对于大多数组成部分,我们报告说,因素模型比简单的AR过程或基于采购经理指标(pmi)的指标模型产生更低的预测误差。与之前的研究一致,我们得出结论,就预测准确性而言,最大的改进是在更不稳定的时期,比如最近的金融危机。然而,与以往的研究不同,我们没有发现成分的波动性与使用因子模型的相对优势之间存在明显的联系。最后,我们发现加入PMI指数作为一个独立的解释变量可以提高因子模型的预测性能。JEL分类:C50, C53, E37, E47
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Forecasting of the Japanese Economy Using Factor Models
While the usefulness of factor models has been acknowledged over recent years, little attention has been devoted to the forecasting power of these models for the Japanese economy. In this paper, we aim at assessing the relative performance of factor models over different samples, including the recent financial crisis. To do so, we construct factor models to forecast Japanese GDP and its subcomponents, using 38 data series (including daily, monthly and quarterly variables) over the period 1991 to 2010. Overall, we find that factor models perform well at tracking GDP movements and anticipating turning points. For most of the components, we report that factor models yield lower forecasting errors than a simple AR process or an indicator model based on Purchasing Managers' Indicators (PMIs). In line with previous studies, we conclude that the largest improvements in terms of forecasting accuracy are found for more volatile periods, such as the recent financial crisis. However, unlike previous studies, we do not find evident links between the volatility of the components and the relative advantage of using factor models. Finally, we show that adding the PMI index as an independent explanatory variable improves the forecasting properties of the factor models. JEL Classification: C50, C53, E37, E47
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信