既不考虑动态套期保值也不考虑完全市场的风险中性期权定价

N. Taleb
{"title":"既不考虑动态套期保值也不考虑完全市场的风险中性期权定价","authors":"N. Taleb","doi":"10.2139/ssrn.2435916","DOIUrl":null,"url":null,"abstract":"Proof that under simple assumptions, such as constraints of Put-Call Parity, the probability measure for the valuation of a European option has the mean derived from the forward price which can, but does not have to be the risk-neutral one, under any general probability distribution, bypassing the Black-Scholes-Merton dynamic hedging argument, and without the requirement of complete markets and other strong assumptions. We confirm that the heuristics used by traders for centuries are both more robust, more consistent, and more rigorous than held in the economics literature. We also show that options can be priced using infinite variance (finite mean) distributions.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Risk Neutral Option Pricing With Neither Dynamic Hedging nor Complete Markets\",\"authors\":\"N. Taleb\",\"doi\":\"10.2139/ssrn.2435916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proof that under simple assumptions, such as constraints of Put-Call Parity, the probability measure for the valuation of a European option has the mean derived from the forward price which can, but does not have to be the risk-neutral one, under any general probability distribution, bypassing the Black-Scholes-Merton dynamic hedging argument, and without the requirement of complete markets and other strong assumptions. We confirm that the heuristics used by traders for centuries are both more robust, more consistent, and more rigorous than held in the economics literature. We also show that options can be priced using infinite variance (finite mean) distributions.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2435916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2435916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

证明在简单的假设下,如买卖权平价的约束下,欧式期权估值的概率度量具有从任何一般概率分布下的远期价格推导出的均值,该均值可以(但不一定是风险中性的均值),绕过Black-Scholes-Merton动态套期保值论证,并且不需要完全市场和其他强假设。我们确认,几个世纪以来交易者使用的启发式比经济学文献中所持有的更稳健、更一致、更严格。我们还表明,期权可以使用无限方差(有限均值)分布定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Neutral Option Pricing With Neither Dynamic Hedging nor Complete Markets
Proof that under simple assumptions, such as constraints of Put-Call Parity, the probability measure for the valuation of a European option has the mean derived from the forward price which can, but does not have to be the risk-neutral one, under any general probability distribution, bypassing the Black-Scholes-Merton dynamic hedging argument, and without the requirement of complete markets and other strong assumptions. We confirm that the heuristics used by traders for centuries are both more robust, more consistent, and more rigorous than held in the economics literature. We also show that options can be priced using infinite variance (finite mean) distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信