{"title":"通过语句组合剥离循环准不变块运动","authors":"Jean-Yves Moyen, Thomas Rubiano, T. Seiller","doi":"10.4204/EPTCS.248.9","DOIUrl":null,"url":null,"abstract":"Several techniques for analysis and transformations are used in compilers. Among them, the peeling of loops for hoisting quasi-invariants can be used to optimize generated code, or simply ease developers' lives. In this paper, we introduce a new concept of dependency analysis borrowed from the field of Implicit Computational Complexity (ICC), allowing to work with composed statements called Chunks to detect more quasi-invariants. Based on an optimization idea given on a WHILE language, we provide a transformation method - reusing ICC concepts and techniques - to compilers. This new analysis computes an invariance degree for each statement or chunks of statements by building a new kind of dependency graph, finds the maximum or worst dependency graph for loops, and recognizes if an entire block is Quasi-Invariant or not. This block could be an inner loop, and in that case the computational complexity of the overall program can be decreased. We already implemented a proof of concept on a toy C parser 1 analysing and transforming the AST representation. In this paper, we introduce the theory around this concept and present a prototype analysis pass implemented on LLVM. In a very near future, we will implement the corresponding transformation and provide benchmarks comparisons.","PeriodicalId":196864,"journal":{"name":"DICE-FOPARA@ETAPS","volume":"56 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Loop Quasi-Invariant Chunk Motion by peeling with statement composition\",\"authors\":\"Jean-Yves Moyen, Thomas Rubiano, T. Seiller\",\"doi\":\"10.4204/EPTCS.248.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several techniques for analysis and transformations are used in compilers. Among them, the peeling of loops for hoisting quasi-invariants can be used to optimize generated code, or simply ease developers' lives. In this paper, we introduce a new concept of dependency analysis borrowed from the field of Implicit Computational Complexity (ICC), allowing to work with composed statements called Chunks to detect more quasi-invariants. Based on an optimization idea given on a WHILE language, we provide a transformation method - reusing ICC concepts and techniques - to compilers. This new analysis computes an invariance degree for each statement or chunks of statements by building a new kind of dependency graph, finds the maximum or worst dependency graph for loops, and recognizes if an entire block is Quasi-Invariant or not. This block could be an inner loop, and in that case the computational complexity of the overall program can be decreased. We already implemented a proof of concept on a toy C parser 1 analysing and transforming the AST representation. In this paper, we introduce the theory around this concept and present a prototype analysis pass implemented on LLVM. In a very near future, we will implement the corresponding transformation and provide benchmarks comparisons.\",\"PeriodicalId\":196864,\"journal\":{\"name\":\"DICE-FOPARA@ETAPS\",\"volume\":\"56 14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DICE-FOPARA@ETAPS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.248.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DICE-FOPARA@ETAPS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.248.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Loop Quasi-Invariant Chunk Motion by peeling with statement composition
Several techniques for analysis and transformations are used in compilers. Among them, the peeling of loops for hoisting quasi-invariants can be used to optimize generated code, or simply ease developers' lives. In this paper, we introduce a new concept of dependency analysis borrowed from the field of Implicit Computational Complexity (ICC), allowing to work with composed statements called Chunks to detect more quasi-invariants. Based on an optimization idea given on a WHILE language, we provide a transformation method - reusing ICC concepts and techniques - to compilers. This new analysis computes an invariance degree for each statement or chunks of statements by building a new kind of dependency graph, finds the maximum or worst dependency graph for loops, and recognizes if an entire block is Quasi-Invariant or not. This block could be an inner loop, and in that case the computational complexity of the overall program can be decreased. We already implemented a proof of concept on a toy C parser 1 analysing and transforming the AST representation. In this paper, we introduce the theory around this concept and present a prototype analysis pass implemented on LLVM. In a very near future, we will implement the corresponding transformation and provide benchmarks comparisons.