对扩大C组的简短贡献(n)

Maretta Sarkis
{"title":"对扩大C组的简短贡献(n)","authors":"Maretta Sarkis","doi":"10.54216/gjmsa.010202","DOIUrl":null,"url":null,"abstract":"In this work, we study the extension problem of a group with type C(n)=∑_(i∈I) C_P^∞ by using a cyclic group of order p. Also, we prove the following two results: 1-) The group C(n) has only one extension which is compatible with R_3. 2-) The group C(n) has two extensions which are compatible with R_2.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Short Contribution to the Extension of the Group C(n)\",\"authors\":\"Maretta Sarkis\",\"doi\":\"10.54216/gjmsa.010202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the extension problem of a group with type C(n)=∑_(i∈I) C_P^∞ by using a cyclic group of order p. Also, we prove the following two results: 1-) The group C(n) has only one extension which is compatible with R_3. 2-) The group C(n) has two extensions which are compatible with R_2.\",\"PeriodicalId\":299243,\"journal\":{\"name\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/gjmsa.010202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.010202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用p阶循环群研究了一类C(n)=∑_(i∈i) C_P^∞群的可拓问题,并证明了以下两个结果:1-)C(n)群只有一个与R_3相容的可拓。2-)群C(n)有两个与R_2相容的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Short Contribution to the Extension of the Group C(n)
In this work, we study the extension problem of a group with type C(n)=∑_(i∈I) C_P^∞ by using a cyclic group of order p. Also, we prove the following two results: 1-) The group C(n) has only one extension which is compatible with R_3. 2-) The group C(n) has two extensions which are compatible with R_2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信