{"title":"李雅普诺夫对角稳定矩阵设计联想记忆的细胞神经网络","authors":"G. Grassi","doi":"10.1109/CNNA.1998.685418","DOIUrl":null,"url":null,"abstract":"Lyapunov diagonally stable matrices are used to design cellular neural networks for associative memories. The proposed technique, which guarantees the global asymptotic stability of the equilibrium point, generates neural circuits where the input data are fed via external inputs, rather than initial conditions. This feature makes the suggested approach particularly suitable for hardware implementation techniques. Simulations results are reported to show the advantages and the usefulness of the proposed design method.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lyapunov diagonally stable matrices to design cellular neural networks for associative memories\",\"authors\":\"G. Grassi\",\"doi\":\"10.1109/CNNA.1998.685418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lyapunov diagonally stable matrices are used to design cellular neural networks for associative memories. The proposed technique, which guarantees the global asymptotic stability of the equilibrium point, generates neural circuits where the input data are fed via external inputs, rather than initial conditions. This feature makes the suggested approach particularly suitable for hardware implementation techniques. Simulations results are reported to show the advantages and the usefulness of the proposed design method.\",\"PeriodicalId\":171485,\"journal\":{\"name\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1998.685418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lyapunov diagonally stable matrices to design cellular neural networks for associative memories
Lyapunov diagonally stable matrices are used to design cellular neural networks for associative memories. The proposed technique, which guarantees the global asymptotic stability of the equilibrium point, generates neural circuits where the input data are fed via external inputs, rather than initial conditions. This feature makes the suggested approach particularly suitable for hardware implementation techniques. Simulations results are reported to show the advantages and the usefulness of the proposed design method.