Yi Song, Chengqun Gui, Zongliang Huo, S. W. Ricky Lee, Sheng Liu
{"title":"纳米级光刻工艺中的机械系统和动态控制:综述","authors":"Yi Song, Chengqun Gui, Zongliang Huo, S. W. Ricky Lee, Sheng Liu","doi":"10.1002/msd2.12010","DOIUrl":null,"url":null,"abstract":"<p>As one of the most advanced and precise equipment in the world, a photolithography scanner is able to fabricate nanometer-scale devices on a chip. To realize such a small dimension, the optical system is the fundamental, but the mechanical system often becomes the bottleneck. In the photolithography, the exposure is a dynamic process. The accuracy and precision of the movement are determined by the mechanical system, which is even more difficult to control compared with the optical system. In the mechanical system, there are four crucial components: the reticle and wafer stages, the linear motor, the metrology system, and the control system. They work together to secure the reticle and substrate locating at the correct position, which determines the overlay and alignment performance in the lithography. In this paper, the principles of these components are reviewed, and the development history of the mechanical system is introduced.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"1 1","pages":"35-51"},"PeriodicalIF":3.4000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12010","citationCount":"2","resultStr":"{\"title\":\"Mechanical system and dynamic control in photolithography for nanoscale fabrication: A critical review\",\"authors\":\"Yi Song, Chengqun Gui, Zongliang Huo, S. W. Ricky Lee, Sheng Liu\",\"doi\":\"10.1002/msd2.12010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As one of the most advanced and precise equipment in the world, a photolithography scanner is able to fabricate nanometer-scale devices on a chip. To realize such a small dimension, the optical system is the fundamental, but the mechanical system often becomes the bottleneck. In the photolithography, the exposure is a dynamic process. The accuracy and precision of the movement are determined by the mechanical system, which is even more difficult to control compared with the optical system. In the mechanical system, there are four crucial components: the reticle and wafer stages, the linear motor, the metrology system, and the control system. They work together to secure the reticle and substrate locating at the correct position, which determines the overlay and alignment performance in the lithography. In this paper, the principles of these components are reviewed, and the development history of the mechanical system is introduced.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"1 1\",\"pages\":\"35-51\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12010\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Mechanical system and dynamic control in photolithography for nanoscale fabrication: A critical review
As one of the most advanced and precise equipment in the world, a photolithography scanner is able to fabricate nanometer-scale devices on a chip. To realize such a small dimension, the optical system is the fundamental, but the mechanical system often becomes the bottleneck. In the photolithography, the exposure is a dynamic process. The accuracy and precision of the movement are determined by the mechanical system, which is even more difficult to control compared with the optical system. In the mechanical system, there are four crucial components: the reticle and wafer stages, the linear motor, the metrology system, and the control system. They work together to secure the reticle and substrate locating at the correct position, which determines the overlay and alignment performance in the lithography. In this paper, the principles of these components are reviewed, and the development history of the mechanical system is introduced.