{"title":"关于一些树的奇偶平均标记","authors":"Leomarich F. Casinillo","doi":"10.14710/jfma.v4i1.10124","DOIUrl":null,"url":null,"abstract":"Let G=(V(G), E(G)) be a connected graph with order |V(G)|=p and size |E(G)|=q. A graph G is said to be even-to-odd mean graph if there exists a bijection function phi:V(G) to {2, 4, ..., 2p} such that the induced mapping phi^*:E(G) to {3, 5, ..., 2p-1} defined by phi^*(uv)=[phi(u)+phi(v)]/2 for all uv element of E(G) is also bijective. The function is called an even-to-odd mean labeling of graph . This paper aimed to introduce a new technique in graph labeling. Hence, the concepts of even-to-odd mean labeling has been evaluated for some trees. In addition, we examined some properties of tree graphs that admits even-to-odd mean labeling and discussed some important results.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON EVEN-TO-ODD MEAN LABELING OF SOME TREES\",\"authors\":\"Leomarich F. Casinillo\",\"doi\":\"10.14710/jfma.v4i1.10124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G=(V(G), E(G)) be a connected graph with order |V(G)|=p and size |E(G)|=q. A graph G is said to be even-to-odd mean graph if there exists a bijection function phi:V(G) to {2, 4, ..., 2p} such that the induced mapping phi^*:E(G) to {3, 5, ..., 2p-1} defined by phi^*(uv)=[phi(u)+phi(v)]/2 for all uv element of E(G) is also bijective. The function is called an even-to-odd mean labeling of graph . This paper aimed to introduce a new technique in graph labeling. Hence, the concepts of even-to-odd mean labeling has been evaluated for some trees. In addition, we examined some properties of tree graphs that admits even-to-odd mean labeling and discussed some important results.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v4i1.10124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v4i1.10124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let G=(V(G), E(G)) be a connected graph with order |V(G)|=p and size |E(G)|=q. A graph G is said to be even-to-odd mean graph if there exists a bijection function phi:V(G) to {2, 4, ..., 2p} such that the induced mapping phi^*:E(G) to {3, 5, ..., 2p-1} defined by phi^*(uv)=[phi(u)+phi(v)]/2 for all uv element of E(G) is also bijective. The function is called an even-to-odd mean labeling of graph . This paper aimed to introduce a new technique in graph labeling. Hence, the concepts of even-to-odd mean labeling has been evaluated for some trees. In addition, we examined some properties of tree graphs that admits even-to-odd mean labeling and discussed some important results.