关于一些树的奇偶平均标记

Leomarich F. Casinillo
{"title":"关于一些树的奇偶平均标记","authors":"Leomarich F. Casinillo","doi":"10.14710/jfma.v4i1.10124","DOIUrl":null,"url":null,"abstract":"Let G=(V(G), E(G)) be a connected graph with order |V(G)|=p and size |E(G)|=q. A graph G is said to be even-to-odd mean graph if there exists a bijection function phi:V(G) to {2, 4, ..., 2p}  such that the induced mapping phi^*:E(G) to {3, 5, ..., 2p-1} defined by phi^*(uv)=[phi(u)+phi(v)]/2 for all uv element of E(G) is also bijective. The function  is called an even-to-odd mean labeling of graph . This paper aimed to introduce a new technique in graph labeling. Hence, the concepts of even-to-odd mean labeling has been evaluated for some trees. In addition, we examined some properties of tree graphs that admits even-to-odd mean labeling and discussed some important results.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON EVEN-TO-ODD MEAN LABELING OF SOME TREES\",\"authors\":\"Leomarich F. Casinillo\",\"doi\":\"10.14710/jfma.v4i1.10124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G=(V(G), E(G)) be a connected graph with order |V(G)|=p and size |E(G)|=q. A graph G is said to be even-to-odd mean graph if there exists a bijection function phi:V(G) to {2, 4, ..., 2p}  such that the induced mapping phi^*:E(G) to {3, 5, ..., 2p-1} defined by phi^*(uv)=[phi(u)+phi(v)]/2 for all uv element of E(G) is also bijective. The function  is called an even-to-odd mean labeling of graph . This paper aimed to introduce a new technique in graph labeling. Hence, the concepts of even-to-odd mean labeling has been evaluated for some trees. In addition, we examined some properties of tree graphs that admits even-to-odd mean labeling and discussed some important results.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v4i1.10124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v4i1.10124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设G=(V(G), E(G))是阶|V(G)|=p,大小|E(G)|=q的连通图。如果存在一个双射函数:V(G)到{2,4,…, 2p}使得诱导映射phi^*:E(G)到{3,5,…, 2p-1}定义为φ ^*(uv)=[φ (u)+ φ (v)]/2,对于E(G)的所有uv元素也是双射。该函数称为图的奇偶平均标注。本文旨在介绍一种新的图标注技术。因此,偶奇均值标记的概念已经对一些树进行了评估。此外,我们还研究了允许奇偶平均标记的树图的一些性质,并讨论了一些重要的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON EVEN-TO-ODD MEAN LABELING OF SOME TREES
Let G=(V(G), E(G)) be a connected graph with order |V(G)|=p and size |E(G)|=q. A graph G is said to be even-to-odd mean graph if there exists a bijection function phi:V(G) to {2, 4, ..., 2p}  such that the induced mapping phi^*:E(G) to {3, 5, ..., 2p-1} defined by phi^*(uv)=[phi(u)+phi(v)]/2 for all uv element of E(G) is also bijective. The function  is called an even-to-odd mean labeling of graph . This paper aimed to introduce a new technique in graph labeling. Hence, the concepts of even-to-odd mean labeling has been evaluated for some trees. In addition, we examined some properties of tree graphs that admits even-to-odd mean labeling and discussed some important results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信