{"title":"使用韩文WordNet、KorLex的语法检查器中错误判断规则的泛化","authors":"Gil-Ja So, Seunghee Lee, H. Kwon","doi":"10.3745/KIPSTB.2011.18B.6.405","DOIUrl":null,"url":null,"abstract":"Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of error decision rules in a grammar checker using Korean WordNet, KorLex\",\"authors\":\"Gil-Ja So, Seunghee Lee, H. Kwon\",\"doi\":\"10.3745/KIPSTB.2011.18B.6.405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2011.18B.6.405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.6.405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalization of error decision rules in a grammar checker using Korean WordNet, KorLex
Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.