{"title":"半经典Dirichlet - Neumann算子的谱渐近性","authors":"Andrew Hassell, V. Ivrii","doi":"10.4171/JST/180","DOIUrl":null,"url":null,"abstract":"Let $M$ be a compact Riemannian manifold with smooth boundary, and let $R(\\lambda)$ be the Dirichlet-to-Neumann operator at frequency $\\lambda$. We obtain a leading asymptotic for the spectral counting function for $\\lambda^{-1}R(\\lambda)$ in an interval $[a_1, a_2)$ as $\\lambda \\to \\infty$, under the assumption that the measure of periodic billiards on $T^*M$ is zero. The asymptotic takes the form \\begin{equation*} N(\\lambda; a_1,a_2) = \\bigl(\\kappa(a_2)-\\kappa(a_1)\\bigr)\\mathsf{vol}'(\\partial M) \\lambda^{d-1}+o(\\lambda^{d-1}), \\end{equation*} where $\\kappa(a)$ is given explicitly by \\begin{equation*} \\kappa(a) = \\frac{\\omega_{d-1}}{(2\\pi)^{d-1}} \\biggl( -\\frac{1}{2\\pi} \\int_{-1}^1 (1 - \\eta^2)^{(d-1)/2} \\frac{a}{a^2 + \\eta^2} \\, d\\eta - \\frac{1}{4} + H(a) (1+a^2)^{(d-1)/2} \\biggr) \\end{equation*} with the Heavyside function $H(a)$.","PeriodicalId":310753,"journal":{"name":"Microlocal Analysis, Sharp Spectral Asymptotics and Applications V","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Spectral Asymptotics for the Semiclassical Dirichlet to Neumann Operator\",\"authors\":\"Andrew Hassell, V. Ivrii\",\"doi\":\"10.4171/JST/180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a compact Riemannian manifold with smooth boundary, and let $R(\\\\lambda)$ be the Dirichlet-to-Neumann operator at frequency $\\\\lambda$. We obtain a leading asymptotic for the spectral counting function for $\\\\lambda^{-1}R(\\\\lambda)$ in an interval $[a_1, a_2)$ as $\\\\lambda \\\\to \\\\infty$, under the assumption that the measure of periodic billiards on $T^*M$ is zero. The asymptotic takes the form \\\\begin{equation*} N(\\\\lambda; a_1,a_2) = \\\\bigl(\\\\kappa(a_2)-\\\\kappa(a_1)\\\\bigr)\\\\mathsf{vol}'(\\\\partial M) \\\\lambda^{d-1}+o(\\\\lambda^{d-1}), \\\\end{equation*} where $\\\\kappa(a)$ is given explicitly by \\\\begin{equation*} \\\\kappa(a) = \\\\frac{\\\\omega_{d-1}}{(2\\\\pi)^{d-1}} \\\\biggl( -\\\\frac{1}{2\\\\pi} \\\\int_{-1}^1 (1 - \\\\eta^2)^{(d-1)/2} \\\\frac{a}{a^2 + \\\\eta^2} \\\\, d\\\\eta - \\\\frac{1}{4} + H(a) (1+a^2)^{(d-1)/2} \\\\biggr) \\\\end{equation*} with the Heavyside function $H(a)$.\",\"PeriodicalId\":310753,\"journal\":{\"name\":\"Microlocal Analysis, Sharp Spectral Asymptotics and Applications V\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microlocal Analysis, Sharp Spectral Asymptotics and Applications V\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JST/180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microlocal Analysis, Sharp Spectral Asymptotics and Applications V","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JST/180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral Asymptotics for the Semiclassical Dirichlet to Neumann Operator
Let $M$ be a compact Riemannian manifold with smooth boundary, and let $R(\lambda)$ be the Dirichlet-to-Neumann operator at frequency $\lambda$. We obtain a leading asymptotic for the spectral counting function for $\lambda^{-1}R(\lambda)$ in an interval $[a_1, a_2)$ as $\lambda \to \infty$, under the assumption that the measure of periodic billiards on $T^*M$ is zero. The asymptotic takes the form \begin{equation*} N(\lambda; a_1,a_2) = \bigl(\kappa(a_2)-\kappa(a_1)\bigr)\mathsf{vol}'(\partial M) \lambda^{d-1}+o(\lambda^{d-1}), \end{equation*} where $\kappa(a)$ is given explicitly by \begin{equation*} \kappa(a) = \frac{\omega_{d-1}}{(2\pi)^{d-1}} \biggl( -\frac{1}{2\pi} \int_{-1}^1 (1 - \eta^2)^{(d-1)/2} \frac{a}{a^2 + \eta^2} \, d\eta - \frac{1}{4} + H(a) (1+a^2)^{(d-1)/2} \biggr) \end{equation*} with the Heavyside function $H(a)$.