基于QNR优化约束的高光谱泛锐化

M. Khan, J. Chanussot, L. Alparone
{"title":"基于QNR优化约束的高光谱泛锐化","authors":"M. Khan, J. Chanussot, L. Alparone","doi":"10.1109/WHISPERS.2009.5289027","DOIUrl":null,"url":null,"abstract":"This paper presents a method for pansharpening of low resolution Hyperspectral (HS) images. The proposed method is based upon the optimization of both the spectral and spatial quality criteria of the QNR quality assessment index. The simultaneous optimization of the spectral and spatial quality constraints is obtained by means of the Pareto solutions, obtained by making use of an evolutionary algorithm. A selection criteria is defined to select a single solution from among the Pareto solutions and the results obtained show both quantitative and qualitative improvement over the results obtained by some existing pansharpening methods.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hyperspectral pansharpening using QNR optimization constraint\",\"authors\":\"M. Khan, J. Chanussot, L. Alparone\",\"doi\":\"10.1109/WHISPERS.2009.5289027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for pansharpening of low resolution Hyperspectral (HS) images. The proposed method is based upon the optimization of both the spectral and spatial quality criteria of the QNR quality assessment index. The simultaneous optimization of the spectral and spatial quality constraints is obtained by means of the Pareto solutions, obtained by making use of an evolutionary algorithm. A selection criteria is defined to select a single solution from among the Pareto solutions and the results obtained show both quantitative and qualitative improvement over the results obtained by some existing pansharpening methods.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种低分辨率高光谱(HS)图像的泛锐化方法。该方法在优化QNR质量评价指标的光谱质量准则和空间质量准则的基础上提出。利用进化算法得到的Pareto解,实现了光谱约束和空间质量约束的同时优化。定义了从Pareto解中选择单个解的选择准则,所得结果与现有的泛锐化方法相比,在定性和定量上都有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral pansharpening using QNR optimization constraint
This paper presents a method for pansharpening of low resolution Hyperspectral (HS) images. The proposed method is based upon the optimization of both the spectral and spatial quality criteria of the QNR quality assessment index. The simultaneous optimization of the spectral and spatial quality constraints is obtained by means of the Pareto solutions, obtained by making use of an evolutionary algorithm. A selection criteria is defined to select a single solution from among the Pareto solutions and the results obtained show both quantitative and qualitative improvement over the results obtained by some existing pansharpening methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信