SVM、ANN和KNN方法在声学道路类型分类中的性能分析

Daghan Dogan, S. Bogosyan
{"title":"SVM、ANN和KNN方法在声学道路类型分类中的性能分析","authors":"Daghan Dogan, S. Bogosyan","doi":"10.1109/INISTA.2019.8778247","DOIUrl":null,"url":null,"abstract":"In the study, a low-cost acoustic system which classifies different roads using acoustic signal processing tool is proposed (group1 road types: asphalt, gravel, stony and snowy road; group2 road types: asphalt data with car pass noise, asphalt data with rain noise, asphalt data with tire squeal noise). Thus it is aimed to estimate road/tire friction forces using slip ratio/friction curve in the active safety systems of the automobiles. Because friction forces cannot be measured directly and it can be only observed or estimated. In the study, acoustic data features which are linear predictive coding (LPC), power spectrum coefficients (PSC) and mel-frequency cepstrum coefficients (MFCC) are used for the acoustic signal processing methods with minimum variance and maximum distance principle. The features are extracted using time windows 0.1 second as the best representative window of signal properties. The classification process is also executed by support vector machine (SVM), artificial neural network (ANN), K-nearest neighbors (KNN) algorithms and compared to different road types. The most important difference of this study from our previous studies is that it compares performances of these three classification methods for different feature vectors obtained from different road conditions and indicates that the KNN is better method than SVM and ANN methods for the acoustic road type classification. According to the results, the KNN method classifies group1 road data with %90 accuracy rate and group2 road data with % 100 accuracy rate.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Analysis of SVM, ANN and KNN Methods for Acoustic Road-Type Classification\",\"authors\":\"Daghan Dogan, S. Bogosyan\",\"doi\":\"10.1109/INISTA.2019.8778247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study, a low-cost acoustic system which classifies different roads using acoustic signal processing tool is proposed (group1 road types: asphalt, gravel, stony and snowy road; group2 road types: asphalt data with car pass noise, asphalt data with rain noise, asphalt data with tire squeal noise). Thus it is aimed to estimate road/tire friction forces using slip ratio/friction curve in the active safety systems of the automobiles. Because friction forces cannot be measured directly and it can be only observed or estimated. In the study, acoustic data features which are linear predictive coding (LPC), power spectrum coefficients (PSC) and mel-frequency cepstrum coefficients (MFCC) are used for the acoustic signal processing methods with minimum variance and maximum distance principle. The features are extracted using time windows 0.1 second as the best representative window of signal properties. The classification process is also executed by support vector machine (SVM), artificial neural network (ANN), K-nearest neighbors (KNN) algorithms and compared to different road types. The most important difference of this study from our previous studies is that it compares performances of these three classification methods for different feature vectors obtained from different road conditions and indicates that the KNN is better method than SVM and ANN methods for the acoustic road type classification. According to the results, the KNN method classifies group1 road data with %90 accuracy rate and group2 road data with % 100 accuracy rate.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在研究中,提出了一种利用声信号处理工具对不同道路进行分类的低成本声学系统(第一组道路类型:沥青、砾石、石质和积雪道路;第2组道路类型:沥青数据带汽车通过噪声、沥青数据带雨水噪声、沥青数据带轮胎尖叫噪声)。因此,本文旨在利用汽车主动安全系统中的滑移比/摩擦曲线来估计道路/轮胎摩擦力。因为摩擦力不能直接测量,只能观察或估计。利用线性预测编码(LPC)、功率谱系数(PSC)和梅尔频率倒谱系数(MFCC)等声学数据特征,采用最小方差和最大距离原则对声学信号进行处理。利用0.1秒的时间窗作为信号特性的最佳代表窗提取特征。分类过程还通过支持向量机(SVM)、人工神经网络(ANN)、k近邻(KNN)算法执行,并与不同的道路类型进行比较。本研究与以往研究最重要的区别在于比较了三种分类方法对不同路况获得的不同特征向量的性能,表明KNN方法在声学道路类型分类方面优于SVM和ANN方法。根据结果,KNN方法对group1道路数据的分类准确率为%90,对group2道路数据的分类准确率为% 100。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of SVM, ANN and KNN Methods for Acoustic Road-Type Classification
In the study, a low-cost acoustic system which classifies different roads using acoustic signal processing tool is proposed (group1 road types: asphalt, gravel, stony and snowy road; group2 road types: asphalt data with car pass noise, asphalt data with rain noise, asphalt data with tire squeal noise). Thus it is aimed to estimate road/tire friction forces using slip ratio/friction curve in the active safety systems of the automobiles. Because friction forces cannot be measured directly and it can be only observed or estimated. In the study, acoustic data features which are linear predictive coding (LPC), power spectrum coefficients (PSC) and mel-frequency cepstrum coefficients (MFCC) are used for the acoustic signal processing methods with minimum variance and maximum distance principle. The features are extracted using time windows 0.1 second as the best representative window of signal properties. The classification process is also executed by support vector machine (SVM), artificial neural network (ANN), K-nearest neighbors (KNN) algorithms and compared to different road types. The most important difference of this study from our previous studies is that it compares performances of these three classification methods for different feature vectors obtained from different road conditions and indicates that the KNN is better method than SVM and ANN methods for the acoustic road type classification. According to the results, the KNN method classifies group1 road data with %90 accuracy rate and group2 road data with % 100 accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信