利用眼动信号检测虹膜打印攻击

M. H. Raju, D. Lohr, Oleg V. Komogortsev
{"title":"利用眼动信号检测虹膜打印攻击","authors":"M. H. Raju, D. Lohr, Oleg V. Komogortsev","doi":"10.1145/3517031.3532521","DOIUrl":null,"url":null,"abstract":"Iris-based biometric authentication is a wide-spread biometric modality due to its accuracy, among other benefits. Improving the resistance of iris biometrics to spoofing attacks is an important research topic. Eye tracking and iris recognition devices have similar hardware that consists of a source of infra-red light and an image sensor. This similarity potentially enables eye tracking algorithms to run on iris-driven biometrics systems. The present work advances the state-of-the-art of detecting iris print attacks, wherein an imposter presents a printout of an authentic user’s iris to a biometrics system. The detection of iris print attacks is accomplished via analysis of the captured eye movement signal with a deep learning model. Results indicate better performance of the selected approach than the previous state-of-the-art.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iris Print Attack Detection using Eye Movement Signals\",\"authors\":\"M. H. Raju, D. Lohr, Oleg V. Komogortsev\",\"doi\":\"10.1145/3517031.3532521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iris-based biometric authentication is a wide-spread biometric modality due to its accuracy, among other benefits. Improving the resistance of iris biometrics to spoofing attacks is an important research topic. Eye tracking and iris recognition devices have similar hardware that consists of a source of infra-red light and an image sensor. This similarity potentially enables eye tracking algorithms to run on iris-driven biometrics systems. The present work advances the state-of-the-art of detecting iris print attacks, wherein an imposter presents a printout of an authentic user’s iris to a biometrics system. The detection of iris print attacks is accomplished via analysis of the captured eye movement signal with a deep learning model. Results indicate better performance of the selected approach than the previous state-of-the-art.\",\"PeriodicalId\":339393,\"journal\":{\"name\":\"2022 Symposium on Eye Tracking Research and Applications\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517031.3532521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3532521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于虹膜的生物识别认证由于其准确性和其他优点而成为一种广泛应用的生物识别方式。提高虹膜生物识别对欺骗攻击的抵抗能力是一个重要的研究课题。眼动追踪和虹膜识别设备有类似的硬件,由红外线光源和图像传感器组成。这种相似性有可能使眼动追踪算法在虹膜驱动的生物识别系统上运行。目前的工作推进了检测虹膜打印攻击的最新技术,其中冒名顶替者向生物识别系统提供真实用户虹膜的打印输出。虹膜指纹攻击检测是通过深度学习模型对捕获的眼动信号进行分析来完成的。结果表明,所选择的方法比以前的最先进的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iris Print Attack Detection using Eye Movement Signals
Iris-based biometric authentication is a wide-spread biometric modality due to its accuracy, among other benefits. Improving the resistance of iris biometrics to spoofing attacks is an important research topic. Eye tracking and iris recognition devices have similar hardware that consists of a source of infra-red light and an image sensor. This similarity potentially enables eye tracking algorithms to run on iris-driven biometrics systems. The present work advances the state-of-the-art of detecting iris print attacks, wherein an imposter presents a printout of an authentic user’s iris to a biometrics system. The detection of iris print attacks is accomplished via analysis of the captured eye movement signal with a deep learning model. Results indicate better performance of the selected approach than the previous state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信