互补

C. Heunen, J. Vicary
{"title":"互补","authors":"C. Heunen, J. Vicary","doi":"10.1093/oso/9780198739623.003.0006","DOIUrl":null,"url":null,"abstract":"Complementarity is a property of a pair of observables being ‘maximally distinct’ from each other and, in this chapter, we analyse this property in categorical terms as a pair of interacting Frobenius structures. Complementary observables play a central role in quantum information theory, and we will see how they can be used to understand the structure of the Deutsch—Jozsa algorithm. We show that complementarity is closely linked to the theory of Hopf algebras. We discuss how many-qubit gates can be modelled using only complementary Frobenius structures, such as controlled negation, controlled phase gates and arbitrary single qubit gates. This leads to the ZX calculus, a sound and complete way to handle quantum computations using only equations in the graphical calculus.","PeriodicalId":314153,"journal":{"name":"Categories for Quantum Theory","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementarity\",\"authors\":\"C. Heunen, J. Vicary\",\"doi\":\"10.1093/oso/9780198739623.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complementarity is a property of a pair of observables being ‘maximally distinct’ from each other and, in this chapter, we analyse this property in categorical terms as a pair of interacting Frobenius structures. Complementary observables play a central role in quantum information theory, and we will see how they can be used to understand the structure of the Deutsch—Jozsa algorithm. We show that complementarity is closely linked to the theory of Hopf algebras. We discuss how many-qubit gates can be modelled using only complementary Frobenius structures, such as controlled negation, controlled phase gates and arbitrary single qubit gates. This leads to the ZX calculus, a sound and complete way to handle quantum computations using only equations in the graphical calculus.\",\"PeriodicalId\":314153,\"journal\":{\"name\":\"Categories for Quantum Theory\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Categories for Quantum Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198739623.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories for Quantum Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198739623.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互补性是一对可观测值彼此“最大不同”的特性,在本章中,我们将以一对相互作用的Frobenius结构的分类术语来分析这一特性。互补观测在量子信息理论中起着核心作用,我们将看到如何使用它们来理解Deutsch-Jozsa算法的结构。我们证明了互补与Hopf代数理论密切相关。我们讨论了仅使用互补的Frobenius结构(如控制负性、控制相位门和任意单量子比特门)可以建模多少个量子比特门。这导致了ZX演算,这是一种仅使用图形演算中的方程来处理量子计算的可靠而完整的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complementarity
Complementarity is a property of a pair of observables being ‘maximally distinct’ from each other and, in this chapter, we analyse this property in categorical terms as a pair of interacting Frobenius structures. Complementary observables play a central role in quantum information theory, and we will see how they can be used to understand the structure of the Deutsch—Jozsa algorithm. We show that complementarity is closely linked to the theory of Hopf algebras. We discuss how many-qubit gates can be modelled using only complementary Frobenius structures, such as controlled negation, controlled phase gates and arbitrary single qubit gates. This leads to the ZX calculus, a sound and complete way to handle quantum computations using only equations in the graphical calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信