统计披露控制的双系统微聚集

M. E. Kabir, Hua Wang, Yanchun Zhang
{"title":"统计披露控制的双系统微聚集","authors":"M. E. Kabir, Hua Wang, Yanchun Zhang","doi":"10.1109/ICDM.2010.111","DOIUrl":null,"url":null,"abstract":"Microdata protection in statistical databases has recently become a major societal concern and has been intensively studied in recent years. Statistical Disclosure Control (SDC) is often applied to statistical databases before they are released for public use. Micro aggregation for SDC is a family of methods to protect micro data from individual identification. SDC seeks to protect micro data in such a way that can be published and mined without providing any private information that can be linked to specific individuals. Micro aggregation works by partitioning the micro data into groups of at least k records and then replacing the records in each group with the centroid of the group. An optimal micro aggregation method must minimize the information loss resulting from this replacement process. The challenge is how to minimize the information loss during the micro aggregation process. This paper presents a pair wise systematic (P-S) micro aggregation method to minimize the information loss. The proposed technique simultaneously forms two distant groups at a time with the corresponding similar records together in a systematic way and then anonymized with the centroid of each group individually. The structure of P-S problem is defined and investigated and an algorithm of the proposed problem is developed. The performance of the P-S algorithm is compared against the most recent micro aggregation methods. Experimental results show that P-S algorithm incurs less than half information loss than the latest micro aggregation methods for all of the test situations.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Pairwise-Systematic Microaggregation for Statistical Disclosure Control\",\"authors\":\"M. E. Kabir, Hua Wang, Yanchun Zhang\",\"doi\":\"10.1109/ICDM.2010.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microdata protection in statistical databases has recently become a major societal concern and has been intensively studied in recent years. Statistical Disclosure Control (SDC) is often applied to statistical databases before they are released for public use. Micro aggregation for SDC is a family of methods to protect micro data from individual identification. SDC seeks to protect micro data in such a way that can be published and mined without providing any private information that can be linked to specific individuals. Micro aggregation works by partitioning the micro data into groups of at least k records and then replacing the records in each group with the centroid of the group. An optimal micro aggregation method must minimize the information loss resulting from this replacement process. The challenge is how to minimize the information loss during the micro aggregation process. This paper presents a pair wise systematic (P-S) micro aggregation method to minimize the information loss. The proposed technique simultaneously forms two distant groups at a time with the corresponding similar records together in a systematic way and then anonymized with the centroid of each group individually. The structure of P-S problem is defined and investigated and an algorithm of the proposed problem is developed. The performance of the P-S algorithm is compared against the most recent micro aggregation methods. Experimental results show that P-S algorithm incurs less than half information loss than the latest micro aggregation methods for all of the test situations.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

统计数据库中的微数据保护最近成为一个主要的社会问题,近年来得到了深入研究。在统计数据库发布供公众使用之前,通常对其进行统计披露控制(SDC)。SDC的微聚合是保护微数据不受个人识别的一系列方法。SDC试图以一种可以发布和挖掘的方式保护微数据,而不提供任何可以与特定个人联系在一起的私人信息。微聚合的工作原理是将微数据划分为至少有k条记录的组,然后用该组的质心替换每组中的记录。一个最优的微聚合方法必须最小化这个替换过程所造成的信息损失。如何使微聚合过程中的信息丢失最小化是一个挑战。提出了一种基于对的系统(P-S)微聚合方法,使信息丢失最小化。该方法同时系统地形成两个相距较远的组,并将相应的相似记录组合在一起,然后分别以每个组的质心匿名化。定义并研究了P-S问题的结构,提出了求解该问题的算法。将P-S算法的性能与最新的微聚合方法进行了比较。实验结果表明,在所有测试情况下,P-S算法的信息损失都小于最新微聚合方法的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pairwise-Systematic Microaggregation for Statistical Disclosure Control
Microdata protection in statistical databases has recently become a major societal concern and has been intensively studied in recent years. Statistical Disclosure Control (SDC) is often applied to statistical databases before they are released for public use. Micro aggregation for SDC is a family of methods to protect micro data from individual identification. SDC seeks to protect micro data in such a way that can be published and mined without providing any private information that can be linked to specific individuals. Micro aggregation works by partitioning the micro data into groups of at least k records and then replacing the records in each group with the centroid of the group. An optimal micro aggregation method must minimize the information loss resulting from this replacement process. The challenge is how to minimize the information loss during the micro aggregation process. This paper presents a pair wise systematic (P-S) micro aggregation method to minimize the information loss. The proposed technique simultaneously forms two distant groups at a time with the corresponding similar records together in a systematic way and then anonymized with the centroid of each group individually. The structure of P-S problem is defined and investigated and an algorithm of the proposed problem is developed. The performance of the P-S algorithm is compared against the most recent micro aggregation methods. Experimental results show that P-S algorithm incurs less than half information loss than the latest micro aggregation methods for all of the test situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信