P. Henglai, R. Laochamroonvorapongse, Naruttee Kovitkanit, Takonporn Kunpitaktakun
{"title":"泰国湾碳捕集利用与封存(CCUS)可行性研究:第一阶段封存潜力确定","authors":"P. Henglai, R. Laochamroonvorapongse, Naruttee Kovitkanit, Takonporn Kunpitaktakun","doi":"10.2523/iptc-22951-ea","DOIUrl":null,"url":null,"abstract":"\n With the determination towards sustainable growth, PTTEP has a commitment to achieve Net Zero Greenhouse Gas Emissions by 2050. Therefore, the Carbon Capture Utilization and Storage (CCUS) project in the Gulf of Thailand was initiated to evaluate the CO2 storage capacity in Bongkot and Arthit fields. Three categories of storage potential were considered including shallow aquifers and depleted gas reservoirs together with storage potential in oil rim reservoirs by using CO2 enhanced oil recovery (CO2-EOR) method.\n The storage potential in shallow aquifer was targeted on porous rock located between seabed and top producing reservoirs which were identified in seismic and/or well data and reached by existing platforms. For the inventory of depleted gas reservoirs, the cumulative gas production volume was allocated to an individual reservoir, which signified storage size and injectivity of reservoir. The depleted gas reservoirs were focused on ones where a great amount of gas has been produced. For the CO2-EOR candidates, all oil rim reservoirs were reviewed and included in the study. The calculation of oil gain, CO2 injection requirement, and CO2 storage potential were based on the statistical data of Water-Alternating-CO2 fields.\n The inventory of CO2 storage potential from three categories were compiled with the information of 1) platform name, 2) remaining reserves, 3) distance from processing platforms, and 4) CO2 storage volume. After considering the CO2 storage potential, two platforms were considered as the most suitable for two fields equipped with CO2 removal units. In addition, the CCS development study considered an option to improve CO2 removal performance of the membrane in order to recover more hydrocarbon from flared gas. After the preliminary technical evaluation, the detailed study with reservoir simulation will be conducted in order to ensure the injectivity at reservoir level, the optimization of injection well number, and the integrity of containment. The injection plan will be formulated, and the investment cost estimation of CCS project can be refined accordingly.\n This CCUS study was initiated to reduce the CO2 emission from production fields under PTTEP. Currently, there are more than 20 CCUS projects around the world with only a few projects at the stage of CO2 injection. It requires good collaboration among subsurface and surface teams to increase confidence in storage suitability assessment. This project provides an example of multi-disciplinary integration and robust workflow starting from CO2 storage identification, volume calculation, to candidate ranking for further detail study.","PeriodicalId":153269,"journal":{"name":"Day 2 Thu, March 02, 2023","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility Study of Carbon Capture Utilization and Storage (CCUS) in the Gulf of Thailand: Phase I Storage Potential Identification\",\"authors\":\"P. Henglai, R. Laochamroonvorapongse, Naruttee Kovitkanit, Takonporn Kunpitaktakun\",\"doi\":\"10.2523/iptc-22951-ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the determination towards sustainable growth, PTTEP has a commitment to achieve Net Zero Greenhouse Gas Emissions by 2050. Therefore, the Carbon Capture Utilization and Storage (CCUS) project in the Gulf of Thailand was initiated to evaluate the CO2 storage capacity in Bongkot and Arthit fields. Three categories of storage potential were considered including shallow aquifers and depleted gas reservoirs together with storage potential in oil rim reservoirs by using CO2 enhanced oil recovery (CO2-EOR) method.\\n The storage potential in shallow aquifer was targeted on porous rock located between seabed and top producing reservoirs which were identified in seismic and/or well data and reached by existing platforms. For the inventory of depleted gas reservoirs, the cumulative gas production volume was allocated to an individual reservoir, which signified storage size and injectivity of reservoir. The depleted gas reservoirs were focused on ones where a great amount of gas has been produced. For the CO2-EOR candidates, all oil rim reservoirs were reviewed and included in the study. The calculation of oil gain, CO2 injection requirement, and CO2 storage potential were based on the statistical data of Water-Alternating-CO2 fields.\\n The inventory of CO2 storage potential from three categories were compiled with the information of 1) platform name, 2) remaining reserves, 3) distance from processing platforms, and 4) CO2 storage volume. After considering the CO2 storage potential, two platforms were considered as the most suitable for two fields equipped with CO2 removal units. In addition, the CCS development study considered an option to improve CO2 removal performance of the membrane in order to recover more hydrocarbon from flared gas. After the preliminary technical evaluation, the detailed study with reservoir simulation will be conducted in order to ensure the injectivity at reservoir level, the optimization of injection well number, and the integrity of containment. The injection plan will be formulated, and the investment cost estimation of CCS project can be refined accordingly.\\n This CCUS study was initiated to reduce the CO2 emission from production fields under PTTEP. Currently, there are more than 20 CCUS projects around the world with only a few projects at the stage of CO2 injection. It requires good collaboration among subsurface and surface teams to increase confidence in storage suitability assessment. This project provides an example of multi-disciplinary integration and robust workflow starting from CO2 storage identification, volume calculation, to candidate ranking for further detail study.\",\"PeriodicalId\":153269,\"journal\":{\"name\":\"Day 2 Thu, March 02, 2023\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Thu, March 02, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22951-ea\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, March 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22951-ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility Study of Carbon Capture Utilization and Storage (CCUS) in the Gulf of Thailand: Phase I Storage Potential Identification
With the determination towards sustainable growth, PTTEP has a commitment to achieve Net Zero Greenhouse Gas Emissions by 2050. Therefore, the Carbon Capture Utilization and Storage (CCUS) project in the Gulf of Thailand was initiated to evaluate the CO2 storage capacity in Bongkot and Arthit fields. Three categories of storage potential were considered including shallow aquifers and depleted gas reservoirs together with storage potential in oil rim reservoirs by using CO2 enhanced oil recovery (CO2-EOR) method.
The storage potential in shallow aquifer was targeted on porous rock located between seabed and top producing reservoirs which were identified in seismic and/or well data and reached by existing platforms. For the inventory of depleted gas reservoirs, the cumulative gas production volume was allocated to an individual reservoir, which signified storage size and injectivity of reservoir. The depleted gas reservoirs were focused on ones where a great amount of gas has been produced. For the CO2-EOR candidates, all oil rim reservoirs were reviewed and included in the study. The calculation of oil gain, CO2 injection requirement, and CO2 storage potential were based on the statistical data of Water-Alternating-CO2 fields.
The inventory of CO2 storage potential from three categories were compiled with the information of 1) platform name, 2) remaining reserves, 3) distance from processing platforms, and 4) CO2 storage volume. After considering the CO2 storage potential, two platforms were considered as the most suitable for two fields equipped with CO2 removal units. In addition, the CCS development study considered an option to improve CO2 removal performance of the membrane in order to recover more hydrocarbon from flared gas. After the preliminary technical evaluation, the detailed study with reservoir simulation will be conducted in order to ensure the injectivity at reservoir level, the optimization of injection well number, and the integrity of containment. The injection plan will be formulated, and the investment cost estimation of CCS project can be refined accordingly.
This CCUS study was initiated to reduce the CO2 emission from production fields under PTTEP. Currently, there are more than 20 CCUS projects around the world with only a few projects at the stage of CO2 injection. It requires good collaboration among subsurface and surface teams to increase confidence in storage suitability assessment. This project provides an example of multi-disciplinary integration and robust workflow starting from CO2 storage identification, volume calculation, to candidate ranking for further detail study.